All Title Author
Keywords Abstract

Cancer Chemopreventive Ability of Conjugated Linolenic Acids

DOI: 10.3390/ijms12117495

Keywords: CLN, CLA, plant seed oils, cancer chemoprevention, PPARγ, p53

Full-Text   Cite this paper   Add to My Lib


Conjugated fatty acids (CFA) have received increased interest because of their beneficial effects on human health, including preventing cancer development. Conjugated linoleic acids (CLA) are such CFA, and have been reviewed extensively for their multiple biological activities. In contrast to other types of CFAs including CLA that are found at low concentrations (less than 1%) in natural products, conjugated linolenic acids (CLN) are the only CFAs that occur in higher quantities in natural products. Some plant seeds contain a considerably high concentration of CLN (30 to 70 wt% lipid). Our research group has screened CLN from different plant seed oils to determine their cancer chemopreventive ability. This review describes the physiological functions of CLN isomers that occur in certain plant seeds. CLN are able to induce apoptosis through decrease of Bcl-2 protein in certain human cancer cell lines, increase expression of peroxisome proliferator-activated receptor (PPAR)-γ, and up-regulate gene expression of p53. Findings in our preclinical animal studies have indicated that feeding with CLN resulted in inhibition of colorectal tumorigenesis through modulation of apoptosis and expression of PPARγ and p53. In this review, we summarize chemopreventive efficacy of CLN against cancer development, especially colorectal cancer.


[1]  Chin, S.F.; Liu, W.; Storkson, J.M.; Ha, Y.L.; Pariza, M.W. Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. J. Food Comp. Anal 1992, 5, 185–197.
[2]  Chisholm, M.J.; Hopkins, C.Y. Conjugated fatty acids in some cucurbitaceae seed oils. Can. J. Biochem 1967, 45, 1081–1086.
[3]  Liu, L.; Hammond, E.G.; Nikolau, B.J. In vivo studies of the biosynthesis of [alpha]-eleostearic acid in the seed of Momordica charantia L. Plant Physiol 1997, 113, 1343–1349.
[4]  Bhaskar, N.; Kinami, T.; Miyashita, K.; Park, S.B.; Endo, Y.; Fujimoto, K. Occurrence of conjugated polyenoic fatty acids in seaweeds from the Indian Ocean. Z. Naturforsch. C 2004, 59, 310–314.
[5]  Lopez, A.; Gerwick, W.H. Two new icosapentaenoic acids from the temperate red seaweed Ptilota filicina J. Agardh. Lipids 1987, 22, 190–194.
[6]  Wise, M.L.; Hamberg, M.; Gerwick, W.H. Biosynthesis of conjugated triene-containing fatty acids by a novel isomerase from the red marine alga Ptilota filicina. Biochemistry 1994, 33, 15223–15232.
[7]  Hildebrand, D.F. Plant lipid biochemistry: Occurrence or unusual fatty acids in plants, 2010. Available online: , accessed on 29 July 2011.
[8]  Takagi, T.; Itabashi, Y. Occurrence of mixtures of geometrical isomers of conjugated octadecatrienoic acids in some seed oils: Analysis by open tubular gas liquid chromatography and high performance liquid chromatography. Lipids 1981, 16, 546–551.
[9]  Suzuki, R.; Arato, S.; Noguchi, R.; Miyashita, K.; Tachikawa, O. Occurrence of conjugated linolenic acid in flesh and seed of bitter gourd. J. Oleo Sci 2001, 50, 753–758.
[10]  Hopkins, C.Y.; Chisholm, M.J. Isolation of natural isomer of linoleic acid from seed oil. J. Am. Oil Chem. Soc 1964, 41, 42–44.
[11]  Bagby, M.O.; Smith, C.R., Jr; Wolff, I.A. Stereochemistry of alpha-parinaric acid from impatiens edgeworthii seed oil. Lipids 1966, 1, 263–267.
[12]  Spitzer, V.; Marx, F.; Pfeilsticker, K. Electron impact mass spectra of the oxazoline derivatives of some conjugated diene and triene C18 fatty acids. J. Am. Oil Chem. Soc 1994, 71, 873–876.
[13]  Kelley, N.S.; Hubbard, N.E.; Erickson, K.L. Conjugated linoleic acid isomers and cancer. J. Nutr 2007, 137, 2599–2607.
[14]  Reynolds, C.M.; Roche, H.M. Conjugated linoleic acid and inflammatory cell signalling. Prostaglandins Leukot Essent. Fatty Acids 2010, 82, 199–204.
[15]  Hennessy, A.A.; Ross, R.P.; Devery, R.; Stanton, C. The health promoting properties of the conjugated isomers of alpha-linolenic acid. Lipids 2011, 46, 105–119.
[16]  Koba, K.; Akahoshi, A.; Yamasaki, M.; Tanaka, K.; Yamada, K.; Iwata, T.; Kamegai, T.; Tsutsumi, K.; Sugano, M. Dietary conjugated linolenic acid in relation to CLA differently modifies body fat mass and serum and liver lipid levels in rats. Lipids 2002, 37, 343–350.
[17]  Miranda, J.; Fernandez-Quintela, A.; Macarulla, M.T.; Churruca, I.; Garcia, C.; Rodriguez, V.M.; Simon, E.; Portillo, M.P. A comparison between CLNA and CLA effects on body fat, serum parameters and liver composition. J. Physiol. Biochem 2009, 65, 25–32.
[18]  Nerurkar, P.; Ray, R.B. Bitter melon: antagonist to cancer. Pharm. Res 2010, 27, 1049–1053.
[19]  Boussetta, T.; Raad, H.; Letteron, P.; Gougerot-Pocidalo, M.A.; Marie, J.C.; Driss, F.; El-Benna, J. Punicic acid a conjugated linolenic acid inhibits TNFalpha-induced neutrophil hyperactivation and protects from experimental colon inflammation in rats. PLoS One 2009, 4, doi:10.1371/journal.pone.0006458.
[20]  Bartsch, H.; Nair, J.; Owen, R.W. Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: emerging evidence for their role as risk modifiers. Carcinogenesis 1999, 20, 2209–2218.
[21]  Rao, C.V.; Hirose, Y.; Indranie, C.; Reddy, B.S. Modulation of experimental colon tumorigenesis by types and amounts of dietary fatty acids. Cancer Res 2001, 61, 1927–1933.
[22]  Reddy, B.S.; Tanaka, T.; Simi, B. Effect of different levels of dietary trans fat or corn oil on azoxymethane-induced colon carcinogenesis in F344 rats. J. Natl. Cancer Inst 1985, 75, 791–798.
[23]  Wynder, E.L.; Kajitani, T.; Ishikawa, S.; Dodo, H.; Takano, A. Environmental factors of cancer of the colon and rectum. II. Japanese epidemiological data. Cancer 1969, 23, 1210–1220.
[24]  International Agency for Research on Cancer. Available online: , accessed on 29 July 2011.
[25]  Alexander, D.D.; Cushing, C.A. Red meat and colorectal cancer: A critical summary of prospective epidemiologic studies. Obes. Res 2011, 12, e472–e493.
[26]  Center, M.M.; Jemal, A.; Smith, R.A.; Ward, E. Worldwide variations in colorectal cancer. CA Cancer J. Clin 2009, 59, 366–378.
[27]  Chan, A.T.; Giovannucci, E.L. Primary prevention of colorectal cancer. Gastroenterology 2010, 138, 2029–2043.
[28]  Herszenyi, L.; Tulassay, Z. Epidemiology of gastrointestinal and liver tumors. Eur. Rev. Med. Pharmacol. Sci 2010, 14, 249–258.
[29]  Le Marchand, L.; Wilkens, L.R.; Kolonel, L.N.; Hankin, J.H.; Lyu, L.C. Associations of sedentary lifestyle, obesity, smoking, alcohol use, and diabetes with the risk of colorectal cancer. Cancer Res 1997, 57, 4787–4794.
[30]  Reddy, B.S. Dietary fat and colon cancer: animal model studies. Lipids 1992, 27, 807–813.
[31]  Rosenberg, D.W.; Giardina, C.; Tanaka, T. Mouse models for the study of colon carcinogenesis. Carcinogenesis 2009, 30, 183–196.
[32]  Tanaka, T. Colorectal carcinogenesis: Review of human and experimental animal studies. J. Carcinog 2009, 8, doi:10.4103/1477-3163.49014.
[33]  Kohno, H.; Suzuki, R.; Noguchi, R.; Hosokawa, M.; Miyashita, K.; Tanaka, T. Dietary conjugated linolenic acid inhibits azoxymethane-induced colonic aberrant crypt foci in rats. Jpn. J. Cancer Res 2002, 93, 133–142.
[34]  Suzuki, R.; Yasui, Y.; Kohno, H.; Miyamoto, S.; Hosokawa, M.; Miyashita, K.; Tanaka, T. Catalpa seed oil rich in 9t,11t,13c-conjugated linolenic acid suppresses the development of colonic aberrant crypt foci induced by azoxymethane in rats. Oncol. Rep 2006, 16, 989–996.
[35]  Noguchi, R.; Yasui, Y.; Suzuki, R.; Hosokawa, M.; Fukunaga, K.; Miyashita, K. Dietary effects of bitter gourd oil on blood and liver lipids of rats. Arch. Biochem. Biophys 2001, 396, 207–212.
[36]  Kohno, H.; Maeda, M.; Honjo, S.; Murakami, M.; Shimada, R.; Masuda, S.; Sumida, T.; Azuma, Y.; Ogawa, H.; Tanaka, T. Prevention of colonic preneoplastic lesions by the beta-cryptoxanthin and hesperidin rich powder prepared from Citrus Unshiu Marc. Juice in male F344 rats. J. Toxicol. Pathol 1999, 12, 209–215.
[37]  Tanaka, T.; Kohno, H.; Shimada, R.; Kagami, S.; Yamaguchi, F.; Kataoka, S.; Ariga, T.; Murakami, A.; Koshimizu, K.; Ohigashi, H. Prevention of colonic aberrant crypt foci by dietary feeding of garcinol in male F344 rats. Carcinogenesis 2000, 21, 1183–1189.
[38]  Tanaka, T.; Shimizu, M.; Kohno, H.; Yoshitani, S.; Tsukio, Y.; Murakami, A.; Safitri, R.; Takahashi, D.; Yamamoto, K.; Koshimizu, K.; et al. Chemoprevention of azoxymethane-induced rat aberrant crypt foci by dietary zerumbone isolated from Zingiber zerumbet. Life Sci 2001, 69, 1935–1945.
[39]  Zheng, Y.; Kramer, P.M.; Olson, G.; Lubet, R.A.; Steele, V.E.; Kelloff, G.J.; Pereira, M.A. Prevention by retinoids of azoxymethane-induced tumors and aberrant crypt foci and their modulation of cell proliferation in the colon of rats. Carcinogenesis 1997, 18, 2119–2125.
[40]  Tanaka, T.; Miyamoto, S.; Suzuki, R.; Yasui, Y. Chemoprevention of colon carcinogenesis by dietary non-nutritive compounds. Curr. Topics Neutraceut. Res 2006, 4, 127–152.
[41]  Tanaka, T.; Oyama, T.; Yasui, Y. Dietary supplements and colorectal cancer. Curr. Topics Neutraceut. Res 2008, 6, 165–188.
[42]  Tanaka, T.; Sugie, S. Inhibition of colon carcinogenesis by dietary non-nutritive compounds. J. Toxicol. Pathol 2007, 20, 215–235.
[43]  Yasui, Y.; Hosokawa, M.; Kohno, H.; Tanaka, T.; Miyashita, K. Growth inhibition and apoptosis induction by all-trans-conjugated linolenic acids on human colon cancer cells. Anticancer Res 2006, 26, 1855–1860.
[44]  Yasui, Y.; Hosokawa, M.; Kohno, H.; Tanaka, T.; Miyashita, K. Troglitazone and 9cis, 11trans, 13trans-conjugated linolenic acid: Comparison of their antiproliferative and apoptosis-inducing effects on different colon cancer cell lines. Chemotherapy 2006, 52, 220–225.
[45]  Yasui, Y.; Hosokawa, M.; Sahara, T.; Suzuki, R.; Ohgiya, S.; Kohno, H.; Tanaka, T.; Miyashita, K. Bitter gourd seed fatty acid rich in 9c,11t,13t-conjugated linolenic acid induces apoptosis and up-regulates the GADD45, p53 and PPARgamma in human colon cancer Caco-2 cells. Prostaglandins Leukot Essent. Fatty Acids 2005, 73, 113–119.
[46]  Kohno, H.; Yasui, Y.; Suzuki, R.; Hosokawa, M.; Miyashita, K.; Tanaka, T. Dietary seed oil rich in conjugated linolenic acid from bitter melon inhibits azoxymethane-induced rat colon carcinogenesis through elevation of colonic PPARgamma expression and alteration of lipid composition. Int. J. Cancer 2004, 110, 896–901.
[47]  Kohno, H.; Suzuki, R.; Yasui, Y.; Hosokawa, M.; Miyashita, K.; Tanaka, T. Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats. Cancer Sci 2004, 95, 481–486.
[48]  Yasui, Y.; Kim, M.; Oyama, T.; Tanaka, T. Colorectal carcinogenesis and suppression of tumor development by inhibition of enzymes and molecular targets. Curr. Enzym. Inhib 2009, 5, 1–26.
[49]  Yasui, Y.; Kim, M.; Tanaka, T. PPAR Ligands for Cancer Chemoprevention. PPAR Res 2008, 2008, doi:10.1155/2008/548919..
[50]  Tanaka, T.; Kohno, H.; Yoshitani, S.; Takashima, S.; Okumura, A.; Murakami, A.; Hosokawa, M. Ligands for peroxisome proliferator-activated receptors alpha and gamma inhibit chemically induced colitis and formation of aberrant crypt foci in rats. Cancer Res 2001, 61, 2424–2428.
[51]  Tsuzuki, T.; Tokuyama, Y.; Igarashi, M.; Miyazawa, T. Tumor growth suppression by alpha-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via lipid peroxidation. Carcinogenesis 2004, 25, 1417–1425.
[52]  Tsuzuki, T.; Igarashi, M.; Miyazawa, T. Conjugated eicosapentaenoic acid (EPA) inhibits transplanted tumor growth via membrane lipid peroxidation in nude mice. J. Nutr 2004, 134, 1162–1166.
[53]  Noguchi, R.; Yasui, Y.; Hosokawa, M.; Fukunaga, K.; Miyashita, K. Biaconversion of Conjugated Licolenic acid to Conjugated Linoleic Acid. In Essential Fatty Acids and Eicosanoids; Huang, Y.S., Lin, S.J., Huang, P.C., Eds.; AOCS Press: Champaign, IL, USA, 2003; pp. 353–359.
[54]  Ha, Y.L.; Grimm, N.K.; Pariza, M.W. Anticarcinogens from fried ground beef: Heat-altered derivatives of linoleic acid. Carcinogenesis 1987, 8, 1881–1887.
[55]  Ip, C.; Chin, S.F.; Scimeca, J.A.; Pariza, M.W. Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Res 1991, 51, 6118–6124.
[56]  Ip, C.; Singh, M.; Thompson, H.J.; Scimeca, J.A. Conjugated linoleic acid suppresses mammary carcinogenesis and proliferative activity of the mammary gland in the rat. Cancer Res 1994, 54, 1212–1215.
[57]  Sarkar, F.H.; Adsule, S.; Li, Y.; Padhye, S. Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini Rev. Med. Chem 2007, 7, 599–608.
[58]  Suzuki, R.; Noguchi, R.; Ota, T.; Abe, M.; Miyashita, K.; Kawada, T. Cytotoxic effect of conjugated trienoic fatty acids on mouse tumor and human monocytic leukemia cells. Lipids 2001, 36, 477–482.
[59]  Igarashi, M.; Miyazawa, T. Preparation and fractionation of conjugated trienes from alpha-linolenic acid and their growth-inhibitory effects on human tumor cells and fibroblasts. Lipids 2005, 40, 109–113.
[60]  Beppu, F.; Hosokawa, M.; Tanaka, L.; Kohno, H.; Tanaka, T.; Miyashita, K. Potent inhibitory effect of trans9, trans11 isomer of conjugated linoleic acid on the growth of human colon cancer cells. J. Nutr. Biochem 2006, 17, 830–836.
[61]  Gupta, R.A.; Dubois, R.N. Controversy: PPARgamma as a target for treatment of colorectal cancer. Am. J. Physiol. Gastrointest. Liver Physiol 2002, 283, G266–G269.
[62]  Sporn, M.B.; Suh, N.; Mangelsdorf, D.J. Prospects for prevention and treatment of cancer with selective PPARgamma modulators (SPARMs). Trends Mol. Med 2001, 7, 395–400.
[63]  McCarty, M.F. Activation of PPARgamma may mediate a portion of the anticancer activity of conjugated linoleic acid. Med. Hypotheses 2000, 55, 187–188.
[64]  Tontonoz, P.; Hu, E.; Spiegelman, B.M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994, 79, 1147–1156.
[65]  DuBois, R.N.; Gupta, R.; Brockman, J.; Reddy, B.S.; Krakow, S.L.; Lazar, M.A. The nuclear eicosanoid receptor, PPARgamma, is aberrantly expressed in colonic cancers. Carcinogenesis 1998, 19, 49–53.
[66]  Kitamura, S.; Miyazaki, Y.; Shinomura, Y.; Kondo, S.; Kanayama, S.; Matsuzawa, Y. Peroxisome proliferator-activated receptor gamma induces growth arrest and differentiation markers of human colon cancer cells. Jpn. J. Cancer Res 1999, 90, 75–80.
[67]  Elstner, E.; Muller, C.; Koshizuka, K.; Williamson, E.A.; Park, D.; Asou, H.; Shintaku, P.; Said, J.W.; Heber, D.; Koeffler, H.P. Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc. Natl. Acad. Sci. USA 1998, 95, 8806–8811.
[68]  Kubota, T.; Koshizuka, K.; Williamson, E.A.; Asou, H.; Said, J.W.; Holden, S.; Miyoshi, I.; Koeffler, H.P. Ligand for peroxisome proliferator-activated receptor gamma (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer Res 1998, 58, 3344–3352.
[69]  Yoshida, K.; Hirose, Y.; Tanaka, T.; Yamada, Y.; Kuno, T.; Kohno, H.; Katayama, M.; Qiao, Z.; Sakata, K.; Sugie, S.; et al. Inhibitory effects of troglitazone, a peroxisome proliferator-activated receptor gamma ligand, in rat tongue carcinogenesis initiated with 4-nitroquinoline 1-oxide. Cancer Sci 2003, 94, 365–371.
[70]  Shimada, T.; Kojima, K.; Yoshiura, K.; Hiraishi, H.; Terano, A. Characteristics of the peroxisome proliferator activated receptor gamma (PPARgamma) ligand induced apoptosis in colon cancer cells. Gut 2002, 50, 658–664.
[71]  Yang, W.L.; Frucht, H. Activation of the PPAR pathway induces apoptosis and COX-2 inhibition in HT-29 human colon cancer cells. Carcinogenesis 2001, 22, 1379–1383.
[72]  Clay, C.E.; Namen, A.M.; Atsumi, G.; Willingham, M.C.; High, K.P.; Kute, T.E.; Trimboli, A.J.; Fonteh, A.N.; Dawson, P.A.; Chilton, F.H. Influence of J series prostaglandins on apoptosis and tumorigenesis of breast cancer cells. Carcinogenesis 1999, 20, 1905–1911.
[73]  Kohno, H.; Yoshitani, S.; Takashima, S.; Okumura, A.; Hosokawa, M.; Yamaguchi, N.; Tanaka, T. Troglitazone, a ligand for peroxisome proliferator-activated receptor gamma, inhibits chemically-induced aberrant crypt foci in rats. Jpn. J. Cancer Res 2001, 92, 396–403.
[74]  Tsubouchi, Y.; Sano, H.; Kawahito, Y.; Mukai, S.; Yamada, R.; Kohno, M.; Inoue, K.; Hla, T.; Kondo, M. Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-gamma agonists through induction of apoptosis. Biochem. Biophys. Res. Commun 2000, 270, 400–405.
[75]  Zweibaum, A. Differentiation of human colon cancer cells: A new approach to cancer of the colon. Ann. Gastroenterol. Hepatol 1993, 29, 257–261. discussion 261–262.
[76]  Zweibaum, A. Differentiation of human colon cancer cells: A new approach to colon cancer. Bull. Acad. Natl. Med 1993, 177, 63–71. discussion 71–63.
[77]  Grivicich, I.; Regner, A.; da Rocha, A.B.; Kayser, G.B.; Schunemann, D.P.; Grass, L.B.; Alves, P.A.; Henriques, J.A.; Schwartsmann, G. The irinotecan/5-fluorouracil combination induces apoptosis and enhances manganese superoxide dismutase activity in HT-29 human colon carcinoma cells. Chemotherapy 2005, 51, 93–102.
[78]  Han, C.; Demetris, A.J.; Michalopoulos, G.K.; Zhan, Q.; Shelhamer, J.H.; Wu, T. PPARgamma ligands inhibit cholangiocarcinoma cell growth through p53–dependent GADD45 and p21 pathway. Hepatology 2003, 38, 167–177.
[79]  Nagamine, M.; Okumura, T.; Tanno, S.; Sawamukai, M.; Motomura, W.; Takahashi, N.; Kohgo, Y. PPAR gamma ligand-induced apoptosis through a p53-dependent mechanism in human gastric cancer cells. Cancer Sci 2003, 94, 338–343.
[80]  Takekawa, M.; Saito, H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 1998, 95, 521–530.
[81]  Smith, M.L.; Chen, I.T.; Zhan, Q.; Bae, I.; Chen, C.Y.; Gilmer, T.M.; Kastan, M.B.; O’Connor, P.M.; Fornace, A.J., Jr. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 1994, 266, 1376–1380.
[82]  Balakumar, P.; Rose, M.; Ganti, S.S.; Krishan, P.; Singh, M. PPAR dual agonists: are they opening Pandora’s Box? Pharmacol. Res 2007, 56, 91–98.
[83]  Basch, E.; Gabardi, S.; Ulbricht, C. Bitter melon (Momordica charantia): A review of efficacy and safety. Am. J. Health Syst. Pharm 2003, 60, 356–359.
[84]  Tenenbaum, A.; Motro, M.; Fisman, E.Z. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: The bezafibrate lessons. Cardiovasc. Diabetol 2005, 4, doi:10.1186/1475-2840-4-14.


comments powered by Disqus