Antibodies play an increasingly important role in both basic research and the pharmaceutical industry. Since their efficiency depends, in ultimate analysis, on their atomic interactions with an antigen, studying such interactions is important to understand how they function and, in the long run, to design new molecules with desired properties. Computational docking, the process of predicting the conformation of a complex from its separated components, is emerging as a fast and affordable technique for the structural characterization of antibody-antigen complexes. In this manuscript, we first describe the different computational strategies for the modeling of antibodies and docking of their complexes, and then predict the binding of two antibodies to the stalk region of influenza hemagglutinin, an important pharmaceutical target. The purpose is two-fold: on a general note, we want to illustrate the advantages and pitfalls of computational docking with a practical example, using different approaches and comparing the results to known experimental structures. On a more specific note, we want to assess if docking can be successful in characterizing the binding to the same influenza epitope of other antibodies with unknown structure, which has practical relevance for pharmaceutical and biological research. The paper clearly shows that some of the computational docking predictions can be very accurate, but the algorithm often fails to discriminate them from inaccurate solutions. It is of paramount importance, therefore, to use rapidly obtained experimental data to validate the computational results.
References
[1]
Edelman, GM; Benacerraf, B; Ovary, Z; Poulik, MD. Structural differences among antibodies of different specificities. Proc. Natl. Acad. Sci USA?1961, 47, 1751–1758, doi:10.1073/pnas.47.11.1751. 13889151
[2]
Edelman, GM; Poulik, MD. Studies on structural units of the gamma-globulins. J. Exp. Med?1961, 113, 861–884, doi:10.1084/jem.113.5.861. 13725659
Rini, JM; Schulze-Gahmen, U; Wilson, IA. Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science?1992, 255, 959–965, doi:10.1126/science.1546293. 1546293
[5]
Al-Lazikani, B; Lesk, AM; Chothia, C. Standard conformations for the canonical structures of immunoglobulins. J. Mol. Biol?1997, 273, 927–948, doi:10.1006/jmbi.1997.1354. 9367782
[6]
Chothia, C; Lesk, AM. Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol?1987, 196, 901–917, doi:10.1016/0022-2836(87)90412-8. 3681981
[7]
Tramontano, A; Chothia, C; Lesk, AM. Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins. J. Mol. Biol?1990, 215, 175–182, doi:10.1016/S0022-2836(05)80102-0. 2118959
[8]
Chothia, C; Lesk, AM; Levitt, M; Amit, AG; Mariuzza, RA; Phillips, SE; Poljak, RJ. The predicted structure of immunoglobulin D1.3 and its comparison with the crystal structure. Science?1986, 233, 755–758, doi:10.1126/science.3090684. 3090684
Chothia, C; Novotny, J; Bruccoleri, R; Karplus, M. Domain association in immunoglobulin molecules. The packing of variable domains. J. Mol. Biol?1985, 186, 651–663, doi:10.1016/0022-2836(85)90137-8. 4093982
[11]
PIGS, Prediction of ImmunoGlobulin Structure, Available online: http://www.biocomputing.it/pigs (accessed on 4 January 2011).
[12]
Marcatili, P; Rosi, A; Tramontano, A. PIGS: automatic prediction of antibody structures. Bioinformatics?2008, 24, 1953–1954, doi:10.1093/bioinformatics/btn341. 18641403
[13]
Morea, V. Antibody Modeling: Implications for Engineering and Design. Methods?2000, 20, 267–279, doi:10.1006/meth.1999.0921. 10694450
[14]
Whitelegg, NR; Rees, AR. WAM: an improved algorithm for modelling antibodies on the WEB. Protein Eng?2000, 13, 819–824, doi:10.1093/protein/13.12.819. 11239080
Morea, V; Tramontano, A; Rustici, M; Chothia, C; Lesk, AM. Conformations of the third hypervariable region in the VH domain of immunoglobulins. J. Mol. Biol?1998, 275, 269–294, doi:10.1006/jmbi.1997.1442. 9466909
[19]
Shirai, H; Kidera, A; Nakamura, H. Structural classification of CDR-H3 in antibodies. FEBS Lett?1996, 399, 1–8, doi:10.1016/S0014-5793(96)01252-5. 8980108
[20]
Ponder, JW; Richards, FM. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol?1987, 193, 775–791, doi:10.1016/0022-2836(87)90358-5. 2441069
[21]
Sivasubramanian, A; Sircar, A; Chaudhury, S; Gray, JJ. Toward high-resolution homology modeling of antibody FV regions and application to antibody-antigen docking. Proteins?2009, 74, 497–514, doi:10.1002/prot.22309. 19062174
[22]
Sircar, A; Kim, ET; Gray, JJ. RosettaAntibody: antibody variable region homology modeling server. Nucleic Acids Res?2009, 37, W474–W479, doi:10.1093/nar/gkp387. 19458157
[23]
RosettaAntibody: FV Homology Modeling Server, Available online: http://antibody.graylab.jhu.edu/ (accessed on 4 January 2011).
[24]
Canutescu, AA; Dunbrack, RL, Jr. Cyclic coordinate descent: A robotics algorithm for protein loop closure. Protein Sci?2003, 12, 963–972, doi:10.1110/ps.0242703. 12717019
[25]
Wang, C; Schueler-Furman, O; Baker, D. Improved side-chain modeling for protein-protein docking. Protein Sci?2005, 14, 1328–1339, doi:10.1110/ps.041222905. 15802647
[26]
Kortemme, T; Morozov, AV; Baker, D. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J. Mol. Biol?2003, 326, 1239–1259, doi:10.1016/S0022-2836(03)00021-4. 12589766
[27]
Lazaridis, T; Karplus, M. Effective energy function for proteins in solution. Proteins?1999, 35, 133–152, doi:10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO;2-N. 10223287
[28]
Dunbrack, RL, Jr; Cohen, FE. Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci?1997, 6, 1661–1681, doi:10.1002/pro.5560060807. 9260279
[29]
Warshel, A; Russell, ST; Churg, AK. Macroscopic models for studies of electrostatic interactions in proteins: limitations and applicability. Proc. Natl. Acad. Sci USA?1984, 81, 4785–4789, doi:10.1073/pnas.81.15.4785. 6589625
de la Paz, P; Sutton, BJ; Darsley, MJ; Rees, AR. Modelling of the combining sites of three anti-lysozyme monoclonal antibodies and of the complex between one of the antibodies and its epitope. EMBO J?1986, 5, 415–425. 2423326
[32]
Jones, TA; Thirup, S. Using known substructures in protein model building and crystallography. EMBO J?1986, 5, 819–822. 3709525
[33]
Coutre, SE; Stanford, JM; Hovis, JG; Stevens, PW; Wu, TT. Possible three-dimensional backbone folding around antibody combining site of immunoglobulin MOPC167. J. Theor. Biol?1981, 92, 417–434, doi:10.1016/0022-5193(81)90257-5. 7334816
[34]
Moult, J; James, MN. An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins?1986, 1, 146–163, doi:10.1002/prot.340010207. 3130622
[35]
Bruccoleri, RE; Haber, E; Novotny, J. Structure of antibody hypervariable loops reproduced by a conformational search algorithm. Nature?1988, 335, 564–568, doi:10.1038/335564a0. 3419534
[36]
Bruccoleri, RE; Karplus, M. Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers?1987, 26, 137–168, doi:10.1002/bip.360260114. 3801593
[37]
Fine, RM; Wang, H; Shenkin, PS; Yarmush, DL; Levinthal, C. Predicting antibody hypervariable loop conformations. II: Minimization and molecular dynamics studies of MCPC603 from many randomly generated loop conformations. Proteins?1986, 1, 342–362, doi:10.1002/prot.340010408. 3449860
[38]
Stanford, JM; Wu, TT. A predictive method for determining possible three-dimensional foldings of immunoglobulin backbones around antibody combining sites. J. Theor. Biol?1981, 88, 421–439, doi:10.1016/0022-5193(81)90275-7. 7278298
[39]
Halperin, I; Ma, B; Wolfson, H; Nussinov, R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins?2002, 47, 409–443, doi:10.1002/prot.10115. 12001221
Cheng, TM; Blundell, TL; Fernandez-Recio, J. pyDock: electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins?2007, 68, 503–515, doi:10.1002/prot.21419. 17444519
[42]
Fernandez-Recio, J; Abagyan, R; Totrov, M. Improving CAPRI predictions: optimized desolvation for rigid-body docking. Proteins?2005, 60, 308–313, doi:10.1002/prot.20575. 15981266
[43]
Heifetz, A; Eisenstein, M. Effect of local shape modifications of molecular surfaces on rigid-body protein-protein docking. Protein Eng?2003, 16, 179–185, doi:10.1093/proeng/gzg021. 12702797
[44]
Lorenzen, S; Zhang, Y. Monte Carlo refinement of rigid-body protein docking structures with backbone displacement and side-chain optimization. Protein Sci?2007, 16, 2716–2725, doi:10.1110/ps.072847207. 17965193
[45]
Meng, EC; Gschwend, DA; Blaney, JM; Kuntz, ID. Orientational sampling and rigid-body minimization in molecular docking. Proteins?1993, 17, 266–278, doi:10.1002/prot.340170305. 8272425
[46]
Cheng, TM; Blundell, TL; Fernandez-Recio, J. Structural assembly of two-domain proteins by rigid-body docking. BMC Bioinformatics?2008, 9, 441, doi:10.1186/1471-2105-9-441. 18925951
[47]
Cherfils, J; Bizebard, T; Knossow, M; Janin, J. Rigid-body docking with mutant constraints of influenza hemagglutinin with antibody HC19. Proteins?1994, 18, 8–18, doi:10.1002/prot.340180104. 7511810
[48]
Clore, GM. Accurate and rapid docking of protein-protein complexes on the basis of intermolecular nuclear overhauser enhancement data and dipolar couplings by rigid body minimization. Proc. Natl. Acad. Sci USA?2000, 97, 9021–9025, doi:10.1073/pnas.97.16.9021. 10922057
[49]
Dell’Orco, D; Seeber, M; de Benedetti, PG; Fanelli, F. Probing fragment complementation by rigid-body docking: in silico reconstitution of calbindin D9k. J. Chem. Inf. Model?2005, 45, 1429–1438, doi:10.1021/ci0501995. 16180920
[50]
Fanelli, F; Ferrari, S. Prediction of MEF2A-DNA interface by rigid body docking: a tool for fast estimation of protein mutational effects on DNA binding. J. Struct. Biol?2006, 153, 278–283, doi:10.1016/j.jsb.2005.12.002. 16427316
[51]
Gray, JJ; Moughon, S; Wang, C; Schueler-Furman, O; Kuhlman, B; Rohl, CA; Baker, D. Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J. Mol. Biol?2003, 331, 281–299, doi:10.1016/S0022-2836(03)00670-3. 12875852
[52]
Segal, D; Eisenstein, M. The effect of resolution-dependent global shape modifications on rigid-body protein-protein docking. Proteins?2005, 59, 580–591, doi:10.1002/prot.20432. 15778956
[53]
Chen, R; Li, L; Weng, Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins?2003, 52, 80–87, doi:10.1002/prot.10389. 12784371
[54]
Gray, JJ; Moughon, SE; Kortemme, T; Schueler-Furman, O; Misura, KM; Morozov, AV; Baker, D. Protein-protein docking predictions for the CAPRI experiment. Proteins?2003, 52, 118–122, doi:10.1002/prot.10384. 12784377
[55]
Hwang, H; Vreven, T; Pierce, BG; Hung, JH; Weng, Z. Performance of ZDOCK and ZRANK in CAPRI rounds 13–19. Proteins?2010, 78, 3104–3110, doi:10.1002/prot.22764. 20936681
[56]
Wiehe, K; Pierce, B; Mintseris, J; Tong, WW; Anderson, R; Chen, R; Weng, Z. ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5. Proteins?2005, 60, 207–213, doi:10.1002/prot.20559. 15981263
[57]
Wiehe, K; Pierce, B; Tong, WW; Hwang, H; Mintseris, J; Weng, Z. The performance of ZDOCK and ZRANK in rounds 6–11 of CAPRI. Proteins?2007, 69, 719–725, doi:10.1002/prot.21747. 17803212
[58]
Chaudhury, S; Gray, JJ. Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles. J. Mol. Biol?2008, 381, 1068–1087, doi:10.1016/j.jmb.2008.05.042. 18640688
[59]
Lyskov, S; Gray, JJ. The RosettaDock server for local protein-protein docking. Nucleic Acids Res?2008, 36, W233–W238, doi:10.1093/nar/gkn216. 18442991
[60]
Schueler-Furman, O; Wang, C; Baker, D. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility. Proteins?2005, 60, 187–194, doi:10.1002/prot.20556. 15981249
Wang, C; Bradley, P; Baker, D. Protein-protein docking with backbone flexibility. J. Mol. Biol?2007, 373, 503–519, doi:10.1016/j.jmb.2007.07.050. 17825317
[64]
Moal, IH; Bates, PA. SwarmDock and the Use of Normal Modes in Protein-Protein Docking. Int. J. Mol. Sci?2010, 11, 3623–3648, doi:10.3390/ijms11103623. 21152290
[65]
de Vries, SJ; van Dijk, M; Bonvin, AM. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc?2010, 5, 883–897, doi:10.1038/nprot.2010.32. 20431534
[66]
Dominguez, C; Boelens, R; Bonvin, AM. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc?2003, 125, 1731–1737, doi:10.1021/ja026939x. 12580598
[67]
Colwell, NS; Blinder, MA; Tsiang, M; Gibbs, CS; Bock, PE; Tollefsen, DM. Allosteric effects of a monoclonal antibody against thrombin exosite II. Biochemistry?1999, 38, 2610. 10029715
[68]
Huang, SY; Zou, X. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins?2007, 66, 399–421. 17096427
[69]
Sircar, A; Chaudhury, S; Kilambi, KP; Berrondo, M; Gray, JJ. A generalized approach to sampling backbone conformations with RosettaDock for CAPRI rounds 13–19. Proteins?2010, 78, 3115–3123, doi:10.1002/prot.22765. 20535822
[70]
Sircar, A; Gray, JJ. SnugDock: paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models. PLoS Comput. Biol?2010, 6, e1000644, doi:10.1371/journal.pcbi.1000644. 20098500
Ivanova, VT; Burtseva, EI; Slepushkin, AN; Oskerko, TA; Varmanian, RV. Variability of hemagglutinin from strains of influenza virus A (H3N2), isolated in Russian from 1989 to 1999. Vopr. Virusol?2000, 45, 28–31. 11200642
[73]
Klimov, AI; Schrader, C; Herrmann, B; Seidel, W; Dohner, L; Ghendon Yu, Z. The variability of genes of influenza A (H3N2) virus strains isolated in the G.D.R. during the 1970–1978 epidemic seasons. Acta Virol?1985, 29, 466–474. 2869657
[74]
Lopez-Galindez, C; Lopez, JA; Melero, JA; de la Fuente, L; Martinez, C; Ortin, J; Perucho, M. Analysis of genetic variability and mapping of point mutations in influenza virus by the RNase A mismatch cleavage method. Proc. Natl. Acad. Sci USA?1988, 85, 3522–3526, doi:10.1073/pnas.85.10.3522. 3368463
[75]
Sui, J; Hwang, WC; Perez, S; Wei, G; Aird, D; Chen, LM; Santelli, E; Stec, B; Cadwell, G; Ali, M; Wan, H; Murakami, A; Yammanuru, A; Han, T; Cox, NJ; Bankston, LA; Donis, RO; Liddington, RC; Marasco, WA. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol?2009, 16, 265–273, doi:10.1038/nsmb.1566. 19234466
[76]
Ekiert, DC; Bhabha, G; Elsliger, MA; Friesen, RH; Jongeneelen, M; Throsby, M; Goudsmit, J; Wilson, IA. Antibody recognition of a highly conserved influenza virus epitope. Science?2009, 324, 246–251, doi:10.1126/science.1171491. 19251591
[77]
Roy, A; Kucukural, A; Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc?2010, 5, 725–738, doi:10.1038/nprot.2010.5. 20360767
[78]
I-Tasser Online. Protein Structure and Function Predictions, Available online: http://zhanglab.ccmb.med.umich.edu/I-TASSER/ (accessed on 4 January 2011).
[79]
London, N; Schueler-Furman, O. Assessing the energy landscape of CAPRI targets by FunHunt. Proteins?2007, 69, 809–815, doi:10.1002/prot.21736. 17803233
[80]
London, N; Schueler-Furman, O. FunHunt: model selection based on energy landscape characteristics. Biochem. Soc. Trans?2008, 36, 1418–1421, doi:10.1042/BST0361418. 19021567
Simonelli, L; Beltramello, M; Yudina, Z; Macagno, A; Calzolai, L; Varani, L. Rapid structural characterization of human antibody-antigen complexes through experimentally validated computational docking. J. Mol. Biol?2010, 396, 1491–1507, doi:10.1016/j.jmb.2009.12.053. 20053355
[83]
Johansson, BE; Kilbourne, ED. Immunization with purified N1 and N2 influenza virus neuraminidases demonstrates cross-reactivity without antigenic competition. Proc. Natl. Acad. Sci USA?1994, 91, 2358–2361, doi:10.1073/pnas.91.6.2358. 8134399
[84]
Mazurkova, NA; Isaeva, EI; Podcherniaeva, R. Peptide mapping of the monoclonal antibodies against the heavy chain hemagglutinin from influenza virus H3N2. Mol. Gen. Mikrobiol. Virusol?2006, 4, 19–23. 17094654
[85]
Andrew, CR. Martin’s Group. ProFit, Available online: http://www.bioinf.org.uk/software/profit/ (accessed on 4 January 2011).