All Title Author
Keywords Abstract

Titanium Immobilized with an Antimicrobial Peptide Derived from Histatin Accelerates the Differentiation of Osteoblastic Cell Line, MC3T3-E1

DOI: 10.3390/ijms11041458

Keywords: antimicrobial peptide, titanium surface, MC3T3-E1 cells

Full-Text   Cite this paper   Add to My Lib


The objective of this study was to evaluate the effect of titanium immobilized with a cationic antimicrobial peptide (JH8194) derived from histatin on the biofilm formation of Porphyromonas gingivalis and differentiation of osteoblastic cells (MC3T3-E1). The titanium specimens (Ti) were immobilized with JH8194, according to the method previously described. The colonization of P. gingivalis on JH8194-Ti was significantly lower than that on control- and blocking-Ti. JH8194-Ti enhanced the mRNA expressions of Runx2 and OPN, and ALPase activity in the MC3T3-E1, as compared with those of control- and blocking-Ti. These results, taken together, suggested the possibility that JH8194-Ti may be a potential aid to shorten the period of acquiring osseointegration.


[1]  Jemt, T; Chai, J; Harnett, J; Heath, M; Hutton, J; Johns, R; McKenna, S; McNamara, D; van Steenberghe, D; Taylor, R; Watson, R; Herrmann, I. A 5-year prospective multicenter follow-up report on overdentures supported by osseointegrated implants. Int. J. Oral. Max. Impl?1996, 11, 291–298.
[2]  Henry, P; Laney, W; Jemt, T; Harris, D; Krogh, P; Polizzi, G; Zarb, G; Herrmann, I. Osseointegrated implants for single-tooth replacement: A prospective 5-year multicenter study. Int. J. Oral. Max. Impl?1996, 11, 450–455.
[3]  Duyck, J; Naert, I. Failure of oral implants: aetiology, symptoms and influencing factors. Clin. Oral. Investig?1998, 2, 102–114, doi:10.1007/s007840050054. 9927910
[4]  Quirynen, M; De Soete, M; van Steenberghe, D. Infectious risks for oral implants: a review of the literature. Clin. Oral. Impl. Res?2002, 13, 1–19, doi:10.1034/j.1600-0501.2002.130101.x.
[5]  Esposito, M; Thomsen, P; Ericson, L; Lekholm, U. Histopathologic observations on early oral implant failures. Int. J. Oral. Max. Impl?1999, 14, 798–810.
[6]  Esposito, M; Thomsen, P; Ericson, L; Sennerby, L; Lekholm, U. Histopathologic observations on late oral implant failures. Clin. Impl. Dent. Relat. Res?2000, 2, 18–32, doi:10.1111/j.1708-8208.2000.tb00103.x.
[7]  Avila, G; Misch, K; Galindo-Moreno, P; Wang, H. Implant surface treatment using biomimetic agents. Impl. Dent?2009, 18, 17–26, doi:10.1097/ID.0b013e318192cb7d.
[8]  Makihira, S; Mine, Y; Nikawa, H; Shuto, T; Kosaka, E; Sugiyama, M; Hosokawa, R. Immobilized-OPG-Fc on a titanium surface inhibits RANKL-dependent osteoclast differentiation in vitro. J. Mater. Sci.: Mater. Med?2009, 21, 647–653.
[9]  Nikawa, H; Fukushima, H; Makihira, S; Hamada, T; Samaranayake, L. Fungicidal effect of three new synthetic cationic peptides against Candida albicans. Oral Dis?2004, 10, 221–228, doi:10.1111/j.1601-0825.2004.01010.x. 15196144
[10]  Murakami, Y; Nagata, H; Shizukuishi, S; Nakashima, K; Okawa, T; Takigawa, M; Tsunemitsu, A. Histatin as a synergistic stimulator with epidermal growth factor of rabbit chondrocyte proliferation. Biochem. Biophys. Res. Commun?1994, 198, 274–280, doi:10.1006/bbrc.1994.1038. 8292031
[11]  Stallmann, H; Faber, C; Bronckers, A; de Blieck-Hogervorst, J; Brouwer, C; Amerongen, A; Wuisman, P. Histatin and lactoferrin derived peptides: Antimicrobial properties and effects on mammalian cells. Peptides?2005, 26, 2355–2359, doi:10.1016/j.peptides.2005.05.014. 15979203
[12]  Murakami, Y; Tamagawa, H; Shizukuishi, S; Tsunemitsu, A; Aimoto, S. Biological role of an arginine residue present in a histidine-rich peptide which inhibits hemagglutination of Porphyromonas gingivalis. FEMS Microbiol. Lett?1992, 77, 201–204. 1334017
[13]  Raj, P; Edgerton, M; Levine, M. Salivary histatin 5: dependence of sequence, chain length, and helical conformation for candidacidal activity. J. Biol. Chem?1990, 265, 3898–3905. 2406266
[14]  Bessho, K; Carnes, D; Cavin, R; Chen, H; Ong, J. BMP stimulation of bone response adjacent to titanium implants in vivo. Clin. Oral. Impl. Res?1999, 10, 212–218, doi:10.1034/j.1600-0501.1999.100304.x.
[15]  Schliephake, H; Aref, A; Scharnweber, D; Bierbaum, S; Roessler, S; Sewing, A. Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation. Clin. Oral. Impl. Res?2005, 16, 563–569, doi:10.1111/j.1600-0501.2005.01143.x.
[16]  Park, J; Suh, J; Chung, H. Effects of calcium ion incorporation on osteoblast gene expression in MC3T3-E1 cells cultured on microstructured titanium surfaces. J. Biomed. Mater. Res.: A?2008, 86, 117–126.
[17]  Mine, Y; Makihira, S; Nikawa, H; Murata, H; Hosokawa, R; Hiyama, A; Mimura, S. Impact of titanium ions on osteoblast-, osteoclast- and gingival epithelial-like cells. J. Prosthodont. Res?2010, 54, 1–6, doi:10.1016/j.jpor.2009.07.003. 19733525
[18]  Becker, D; Geissler, U; Hempel, U; Bierbaum, S; Scharnweber, D; Worch, H; Wenzel, K. Proliferation and differentiation of rat calvarial osteoblasts on type I collagen-coated titanium alloy. J. Biomed. Mater. Res?2002, 59, 516–527, doi:10.1002/jbm.1265. 11774310
[19]  Müller, R; Abke, J; Schnell, E; Scharnweber, D; Kujat, R; Englert, C; Taheri, D; Nerlich, M; Angele, P. Influence of surface pretreatment of titanium- and cobalt-based biomaterials on covalent immobilization of fibrillar collagen. Biomaterials?2006, 27, 4059–4068, doi:10.1016/j.biomaterials.2006.03.019. 16580064
[20]  Degasne, I; Baslé, M; Demais, V; Huré, G; Lesourd, M; Grolleau, B; Mercier, L; Chappard, D. Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcif. Tissue. Int?1999, 64, 499–507, doi:10.1007/s002239900640. 10341022
[21]  Zreiqat, H; Akin, F; Howlett, C; Markovic, B; Haynes, D; Lateef, S; Hanley, L. Differentiation of human bone-derived cells grown on GRGDSP-peptide bound titanium surfaces. J. Biomed. Mater. Res.: A?2003, 64, 105–113.
[22]  Kokkonen, H; Cassinelli, C; Verhoef, R; Morra, M; Schols, H; Tuukkanen, J. Differentiation of osteoblasts on pectin-coated titanium. Biomacromolecules?2008, 9, 2369–2376, doi:10.1021/bm800356b. 18680340
[23]  Satou, N; Satou, J; Shintani, H; Okuda, K. Adherence of streptococci to surface-modified glass. J. Gen. Microbiol?1988, 134, 1299–1305. 3199098
[24]  Nikawa, H; Sadamori, S; Hamada, T; Satou, N; Okuda, K. Non-specific adherence of Candida species to surface-modified glass. J. Med. Vet. Mycol?1989, 27, 269–271, doi:10.1080/02681218980000361. 2795407
[25]  Martin, H; Schulz, K; Bumgardner, J; Walters, K. XPS study on the use of 3-aminopropyltriethoxysilane to bond chitosan to a titanium surface. Langmuir?2007, 23, 6645–6651, doi:10.1021/la063284v. 17488131
[26]  Nikawa, H; Sadamori, S; Hamada, T; Okuda, K. Factors involved in the adherence of Candida albicans and Candida tropicalis to protein-adsorbed surfaces. An in vitro study using immobilized protein. Mycopathologia?1992, 118, 139–145, doi:10.1007/BF00437146. 1528229
[27]  Zhao, G; Schwartz, Z; Wieland, M; Rupp, F; Geis-Gerstorfer, J; Cochran, D; Boyan, B. High surface energy enhances cell response to titanium substrate microstructure. J. Biomed. Mater. Res.: A?2005, 74, 49–58.
[28]  Makihira, S; Yan, W; Ohno, S; Kawamoto, T; Fujimoto, K; Okimura, A; Yoshida, E; Noshiro, M; Hamada, T; Kato, Y. Enhancement of cell adhesion and spreading by a cartilage-specific noncollagenous protein, cartilage matrix protein (CMP/Matrilin-1), via integrin alpha1beta1. J. Biol. Chem?1999, 274, 11417–11423, doi:10.1074/jbc.274.16.11417. 10196235


comments powered by Disqus