All Title Author
Keywords Abstract

Comparative Study of the Dissociative Ionization of 1,1,1 Trichloroethane Using Nanosecond and Femtosecond Laser Pulses

DOI: 10.3390/ijms11031114

Keywords: laser ionization, laser dissociation, coherent control, trichloroethane

Full-Text   Cite this paper   Add to My Lib


Changes in the laser induced molecular dissociation of 1,1,1-trichloroethane (TCE) were studied using a range of intensities and standard laser wavelengths with nanosecond and femtosecond pulse durations. TCE contains C-H, C-C and C-Cl bonds and selective bond breakage of one or more of these bonds is of scientific interest. Using laser ionization time of flight mass spectrometry, it was found that considerable variation of fragment ion peak heights as well as changes in relative peak ratios is possible by varying the laser intensity (by attenuation), wavelength and pulse duration using standard laser sources. The nanosecond laser dissociation seems to occur via C-Cl bond breakage, with significant fragmentation and only a few large mass ion peaks observed. In contrast, femtosecond laser dissociative ionization results in many large mass ion peaks. Evidence is found for various competing dissociation and ionization pathways. Variation of the nanosecond laser intensity does not change the fragmentation pattern, while at high femtosecond intensities large changes are observed in relative ion peak sizes. The total ionization yield and fragmentation ratios are presented for a range of wavelengths and intensities, and compared to the changes observed due to a linear chirp variation.


[1]  Dantus, M; Lozovoy, VV. Experimental coherent laser control of physicochemical processes. Chem. Rev?2004, 104, 1813–1859, doi:10.1021/cr020668r. 15080713
[2]  Lozovoy, VV; Dantus, M. Laser control of physicochemical processes; experiments and applications. Annu. Rep. Prog. Chem.: C?2006, 102, 227–258, doi:10.1039/b417201a.
[3]  Lozovoy, VV; Zhu, X; Gunaratne, TC; Harris, DA; Shane, JC; Dantus, M. Control of molecular fragmentation using shaped femtosecond pulses. J. Phys. Chem. A?2008, 112, 3790–3811.
[4]  Assion, A; Baumert, T; Bergt, M; Brixner, T; Kiefer, B; Sayfried, V; Strehle, M; Gerber, G. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science?1998, 282, 919–922, doi:10.1126/science.282.5390.919. 9794756
[5]  Damrauer, NH; Dietl, C; Krampert, G; Lee, S-H; Jung, K-H; Gerber, G. Control of bond-selective photochemistry in CH2BrCl using adaptive femtosecond pulse shaping. Eur. Phys. J. D?2002, 20, 71–76, doi:10.1140/epjd/e2002-00101-8.
[6]  Graham, P; Menkir, G; Levis, RJ. An investigation of the effects of experimental parameters on the closed-loop control of photoionization/dissociation processes in acetophenone. Spectrochim. Acta B?2002, 58, 1097–1108.
[7]  Cardoza, D; Baertschy, M; Weinacht, T. Interpreting closed-loop learning control of molecular fragmentation in terms of wave-packet dynamics and enhanced molecular ionization. J. Chem. Phys?2005, 123, 074315. doi:10.1063/1.2008257., doi:10.1063/1.2008257. 16229578
[8]  Cardoza, D; Trallero-Herrero, C; Langhojer, F; Rabitz, H; Weinacht, T. Transformations to diagonal bases in closed-loop quantum learning control experiments. J. Chem. Phys?2005, 122, 124306:1–124306:7.
[9]  Cardoza, D; Baertschy, M; Weinacht, T. Understanding learning control of molecular fragmentation. Chem. Phys. Lett?2005, 411, 311–315, doi:10.1016/j.cplett.2005.06.044.
[10]  Ledingham, KWD; Singhal, RP. High intensity laser mass spectrometry - a review. Int. J. Mass Spectrom. Ion Proc?1997, 163, 149–168, doi:10.1016/S0168-1176(97)00015-3.
[11]  Weinkauf, R; Aicher, P; Wesley, G; Grotemeyer, J; Schlag, EW. Femtosecond versus nanosecond multiphoton ionization and dissociation of large molecules. J. Phys. Chem?1994, 98, 8381–8391, doi:10.1021/j100085a019.
[12]  Levis, RJ; DeWitt, MJ. Photoexcitation, ionization, and dissociation of molecules using intense near-infrared radiation of femtosecond duration. J. Phys. Chem. A?1999, 103, 6493–6507, doi:10.1021/jp984543v.
[13]  Nakashima, N; Shimizu, S; Yatsuhashi, T; Sakabe, S; Izawa, Y. Large molecules in high-intensity laser fields. J. Photochem. Photobiol. C: Photochem. Rev?2000, 1, 131–143, doi:10.1016/S1389-5567(00)00009-5.
[14]  Harada, H; Shimizu, S; Yatsuhashi, T; Sakabe, S; Izawa, Y; Nakashima, N. A key factor in parent and fragment ion formation on irradiation with an intense femtosecond laser pulse. Chem. Phys. Lett?2001, 342, 563–570, doi:10.1016/S0009-2614(01)00662-5.
[15]  Robson, L; Ledingham, KWD; Tasker, AD; McKenna, P; McCanny, T; Kosmidis, C; Jaroszynski, DA; Jones, DR; Issac, RC; Jamieson, S. Ionisation and fragmentation of polycyclic aromatic hydrocarbons by femtosecond laser pulses at wavelengths resonant with cation transitions. Chem. Phys. Lett?2002, 360, 382–389, doi:10.1016/S0009-2614(02)00872-2.
[16]  Posthumus, JH; Giles, AJ; Thompson, MR; Codling, K. Field-ionization, Coulomb explosion of diatomic molecules in intense laser fields. J. Phys. B: At. Mol. Opt. Phys?1996, 29, 5811–5829, doi:10.1088/0953-4075/29/23/022.
[17]  Vanlaethem-Meurée, N; Wisenberg, J; Simon, PC. Ultraviolet absorption spectrum of methylchloroform in the vapor phase. Geophys. Res. Lett?1979, 6, 451–54, doi:10.1029/GL006i006p00451.
[18]  Nayak, AK; Kurylo, MJ; Fahr, A. UV absorption cross sections of methylchloroform: Temperature-dependent gas and liquid phase measurements. J. Geophys. Res?1995, 100, 11185–11189, doi:10.1029/95JD00695.
[19]  Hubrich, C; Stuhl, F. The ultraviolet absorption of some halogenated methanes and ethanes of atmospheric interest. J. Photochem?1980, 12, 93–107, doi:10.1016/0047-2670(80)85031-3.
[20]  Katsumata, S; Kimura, K. Photoelectron spectra and sum rule consideration. Effect of chlorine substitution on ionization energies for chloroethanes, chloroacetaldehydes and chloroacetyl chlorides. J. Electron. Spectrosc. Relat. Phenom?1975, 6, 309–319, doi:10.1016/0368-2048(75)80040-5.
[21]  Wu, YG; Bozzelli, JW. Pyrolysis and oxidation of 1,1,1-Trichloroethane in methane/oxygen/argon. Hazard. Waste Hazard. Mater?1993, 10, 381–395, doi:10.1089/hwm.1993.10.381.
[22]  Ogura, H. CO2 Laser-induced Decomposition of 1,1,2-Trichloroethane. Bull. Chem. Soc. Jpn?1985, 58, 3528–3534, doi:10.1246/bcsj.58.3528.
[23]  Posthumus, JH. The dynamics of small molecules in intense laser fields. Rep. Prog. Phys?2004, 67, 623–665, doi:10.1088/0034-4885/67/5/R01.
[24]  Ma, J; Ding, L; Fang, L; Zheng, H; Gu, X; Zhang, W. The dynamics of small molecules in intense laser fields. Opt. Appl?2005, XXXV, 395–402.
[25]  Castillejo, M; Martin, M; de Nalda, R; Couris, S; Koudoumas, E. Dissociative ionization of halogenated ethylenes in intense femtosecond laser pulses. Chem. Phys. Lett?2002, 353, 295–303, doi:10.1016/S0009-2614(02)00039-8.
[26]  Tzallas, P; Kosmidis, C; Graham, P; Ledingham, KWD; McCanny, T; Hankin, SM; Singhal, RP; Taday, PF; Langley, AJ. Coulomb explosion in aromatic molecules and their deuterated derivatives. Chem. Phys. Lett?2000, 332, 236–242, doi:10.1016/S0009-2614(00)01285-9.
[27]  Kaziannis, S; Kosmidis, C. The ejection anisotropy in the Coulomb explosion of some alkyl halide molecules under strong ps laser fields. Chem. Phys. Lett?2009, 467, 281–286, doi:10.1016/j.cplett.2008.11.068.
[28]  Kong, F; Luo, Q; Xu, H; Sharafi, M; Song, D; Chin, SL. Explosive photodissociation of methane induced by ultrafast intense laser. J. Chem. Phys?2006, 125, 133320:1–133320:5.


comments powered by Disqus