All Title Author
Keywords Abstract

Biology  2012 

Strategies to Block HIV Transcription: Focus on Small Molecule Tat Inhibitors

DOI: 10.3390/biology1030668

Keywords: Tat, TAR, inhibitors, small molecule compounds, transcription, latency, chronic cells, HIV-1, HIV-2

Full-Text   Cite this paper   Add to My Lib

Abstract:

After entry into the target cell, the human immunodeficiency virus type I (HIV) integrates into the host genome and becomes a proviral eukaryotic transcriptional unit. Transcriptional regulation of provirus gene expression is critical for HIV replication. Basal transcription from the integrated HIV promoter is very low in the absence of the HIV transactivator of transcription (Tat) protein and is solely dependent on cellular transcription factors. The 5' terminal region (+1 to +59) of all HIV mRNAs forms an identical stem-bulge-loop structure called the Transactivation Responsive (TAR) element. Once Tat is made, it binds to TAR and drastically activates transcription from the HIV LTR promoter. Mutations in either the Tat protein or TAR sequence usually affect HIV replication, indicating a strong requirement for their conservation. The necessity of the Tat-mediated transactivation cascade for robust HIV replication renders Tat one of the most desirable targets for transcriptional therapy against HIV replication. Screening based on inhibition of the Tat-TAR interaction has identified a number of potential compounds, but none of them are currently used as therapeutics, partly because these agents are not easily delivered for an efficient therapy, emphasizing the need for small molecule compounds. Here we will give an overview of the different strategies used to inhibit HIV transcription and review the current repertoire of small molecular weight compounds that target HIV transcription.

References

[1]  Chomont, N.; El-Far, M.; Ancuta, P.; Trautmann, L.; Procopio, F.A.; Yassine-Diab, B.; Boucher, G.; Boulassel, M.R.; Ghattas, G.; Brenchley, J.M.; et al. Hiv reservoir size and persistence are driven by t cell survival and homeostatic proliferation. Nat. Med. 2009, 15, 893–900, doi:10.1038/nm.1972.
[2]  Chun, T.W.; Stuyver, L.; Mizell, S.B.; Ehler, L.A.; Mican, J.A.; Baseler, M.; Lloyd, A.L.; Nowak, M.A.; Fauci, A.S. Presence of an inducible hiv-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 1997, 94, 13193–13197.
[3]  Finzi, D.; Hermankova, M.; Pierson, T.; Carruth, L.M.; Buck, C.; Chaisson, R.E.; Quinn, T.C.; Chadwick, K.; Margolick, J.; Brookmeyer, R.; et al. Identification of a reservoir for hiv-1 in patients on highly active antiretroviral therapy. Science 1997, 278, 1295–1300.
[4]  Wong, J.K.; Hezareh, M.; Gunthard, H.F.; Havlir, D.V.; Ignacio, C.C.; Spina, C.A.; Richman, D.D. Recovery of replication-competent hiv despite prolonged suppression of plasma viremia. Science 1997, 278, 1291–1295.
[5]  Chun, T.W.; Carruth, L.; Finzi, D.; Shen, X.; DiGiuseppe, J.A.; Taylor, H.; Hermankova, M.; Chadwick, K.; Margolick, J.; Quinn, T.C.; et al. Quantification of latent tissue reservoirs and total body viral load in hiv-1 infection. Nature 1997, 387, 183–188.
[6]  Finzi, D.; Blankson, J.; Siliciano, J.D.; Margolick, J.B.; Chadwick, K.; Pierson, T.; Smith, K.; Lisziewicz, J.; Lori, F.; Flexner, C.; et al. Latent infection of cd4+ t cells provides a mechanism for lifelong persistence of hiv-1, even in patients on effective combination therapy. Nat. Med. 1999, 5, 512–517, doi:10.1038/8394.
[7]  Toohey, M.G.; Jones, K.A. In vitro formation of short rna polymerase ii transcripts that terminate within the hiv-1 and hiv-2 promoter-proximal downstream regions. Genes Dev. 1989, 3, 265–282, doi:10.1101/gad.3.3.265.
[8]  Dingwall, C.; Ernberg, I.; Gait, M.J.; Green, S.M.; Heaphy, S.; Karn, J.; Lowe, A.D.; Singh, M.; Skinner, M.A. Hiv-1 tat protein stimulates transcription by binding to a u-rich bulge in the stem of the tar rna structure. EMBO J. 1990, 9, 4145–4153.
[9]  Dingwall, C.; Ernberg, I.; Gait, M.J.; Green, S.M.; Heaphy, S.; Karn, J.; Lowe, A.D.; Singh, M.; Skinner, M.A.; Valerio, R. Human immunodeficiency virus 1 tat protein binds trans-activation-responsive region (tar) rna in vitro. Proc. Natl. Acad. Sci. USA 1989, 86, 6925–6929.
[10]  Marshall, N.F.; Price, D.H. Control of formation of two distinct classes of rna polymerase ii elongation complexes. Mol. Cell. Biol. 1992, 12, 2078–2090.
[11]  Marshall, N.F.; Price, D.H. Purification of p-tefb, a transcription factor required for the transition into productive elongation. J. Biol. Chem. 1995, 270, 12335–12338, doi:10.1074/jbc.270.21.12335.
[12]  Michels, A.A.; Nguyen, V.T.; Fraldi, A.; Labas, V.; Edwards, M.; Bonnet, F.; Lania, L.; Bensaude, O. Maq1 and 7sk rna interact with cdk9/cyclin t complexes in a transcription-dependent manner. Mol. Cell. Biol. 2003, 23, 4859–4869, doi:10.1128/MCB.23.14.4859-4869.2003.
[13]  Yik, J.H.; Chen, R.; Nishimura, R.; Jennings, J.L.; Link, A.J.; Zhou, Q. Inhibition of p-tefb (cdk9/cyclin t) kinase and rna polymerase ii transcription by the coordinated actions of hexim1 and 7sk snrna. Mol. Cell. 2003, 12, 971–982, doi:10.1016/S1097-2765(03)00388-5.
[14]  Peterlin, B.M.; Price, D.H. Controlling the elongation phase of transcription with p-tefb. Mol. Cell. 2006, 23, 297–305, doi:10.1016/j.molcel.2006.06.014.
[15]  Van Lint, C. Role of chromatin in hiv-1 transcriptional regulation. Adv. Pharmacol. 2000, 48, 121–160, doi:10.1016/S1054-3589(00)48005-1.
[16]  Robison, A.J.; Nestler, E.J. Transcriptional and epigenetic mechanisms of addiction. Nat. Rev. Neurosci. 2011, 12, 623–637.
[17]  Van Lint, C.; Emiliani, S.; Ott, M.; Verdin, E. Transcriptional activation and chromatin remodeling of the hiv-1 promoter in response to histone acetylation. EMBO J. 1996, 15, 1112–1120.
[18]  Verdin, E. Dnase i-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J. Virol. 1991, 65, 6790–6799.
[19]  Kiernan, R.E.; Vanhulle, C.; Schiltz, L.; Adam, E.; Xiao, H.; Maudoux, F.; Calomme, C.; Burny, A.; Nakatani, Y.; Jeang, K.T.; et al. Hiv-1 tat transcriptional activity is regulated by acetylation. EMBO J. 1999, 18, 6106–6118, doi:10.1093/emboj/18.21.6106.
[20]  Ghose, R.; Liou, L.Y.; Herrmann, C.H.; Rice, A.P. Induction of tak (cyclin t1/p-tefb) in purified resting cd4(+) t lymphocytes by combination of cytokines. J. Virol. 2001, 75, 11336–11343, doi:10.1128/JVI.75.23.11336-11343.2001.
[21]  Lassen, K.G.; Bailey, J.R.; Siliciano, R.F. Analysis of human immunodeficiency virus type 1 transcriptional elongation in resting cd4+ t cells in vivo. J. Virol. 2004, 78, 9105–9114, doi:10.1128/JVI.78.17.9105-9114.2004.
[22]  Lin, X.; Irwin, D.; Kanazawa, S.; Huang, L.; Romeo, J.; Yen, T.S.; Peterlin, B.M. Transcriptional profiles of latent human immunodeficiency virus in infected individuals: Effects of tat on the host and reservoir. J. Virol. 2003, 77, 8227–8236, doi:10.1128/JVI.77.15.8227-8236.2003.
[23]  He, G.; Margolis, D.M. Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (hiv-1) by the hiv-1 repressor yy1 and hiv-1 activator tat. Mol. Cell. Biol. 2002, 22, 2965–2973, doi:10.1128/MCB.22.9.2965-2973.2002.
[24]  Tyagi, M.; Karn, J. Cbf-1 promotes transcriptional silencing during the establishment of hiv-1 latency. EMBO J. 2007, 26, 4985–4995, doi:10.1038/sj.emboj.7601928.
[25]  du Chene, I.; Basyuk, E.; Lin, Y.L.; Triboulet, R.; Knezevich, A.; Chable-Bessia, C.; Mettling, C.; Baillat, V.; Reynes, J.; Corbeau, P.; et al. Suv39h1 and hp1gamma are responsible for chromatin-mediated hiv-1 transcriptional silencing and post-integration latency. EMBO J. 2007, 26, 424–435, doi:10.1038/sj.emboj.7601517.
[26]  Mahmoudi, T.; Parra, M.; Vries, R.G.; Kauder, S.E.; Verrijzer, C.P.; Ott, M.; Verdin, E. The swi/snf chromatin-remodeling complex is a cofactor for tat transactivation of the hiv promoter. J. Biol. Chem. 2006, 281, 19960–19968.
[27]  Treand, C.; du Chene, I.; Bres, V.; Kiernan, R.; Benarous, R.; Benkirane, M.; Emiliani, S. Requirement for swi/snf chromatin-remodeling complex in tat-mediated activation of the hiv-1 promoter. EMBO J. 2006, 25, 1690–1699, doi:10.1038/sj.emboj.7601074.
[28]  Gerritsen, M.E.; Williams, A.J.; Neish, A.S.; Moore, S.; Shi, Y.; Collins, T. Creb-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl. Acad. Sci. USA 1997, 94, 2927–2932, doi:10.1073/pnas.94.7.2927.
[29]  Agbottah, E.; Deng, L.; Dannenberg, L.O.; Pumfery, A.; Kashanchi, F. Effect of swi/snf chromatin remodeling complex on hiv-1 tat activated transcription. Retrovirology 2006, 3, 48, doi:10.1186/1742-4690-3-48.
[30]  Benkirane, M.; Chun, R.F.; Xiao, H.; Ogryzko, V.V.; Howard, B.H.; Nakatani, Y.; Jeang, K.T. Activation of integrated provirus requires histone acetyltransferase. P300 and p/caf are coactivators for hiv-1 tat. J. Biol. Chem. 1998, 273, 24898–24905.
[31]  Col, E.; Caron, C.; Seigneurin-Berny, D.; Gracia, J.; Favier, A.; Khochbin, S. The histone acetyltransferase, hgcn5, interacts with and acetylates the hiv transactivator, tat. J. Biol. Chem. 2001, 276, 28179–28184.
[32]  Hottiger, M.O.; Nabel, G.J. Interaction of human immunodeficiency virus type 1 tat with the transcriptional coactivators p300 and creb binding protein. J. Virol. 1998, 72, 8252–8256.
[33]  Marzio, G.; Tyagi, M.; Gutierrez, M.I.; Giacca, M. Hiv-1 tat transactivator recruits p300 and creb-binding protein histone acetyltransferases to the viral promoter. Proc. Natl. Acad. Sci. USA 1998, 95, 13519–13524, doi:10.1073/pnas.95.23.13519.
[34]  Nabel, G.; Baltimore, D. An inducible transcription factor activates expression of human immunodeficiency virus in t cells. Nature 1987, 326, 711–713, doi:10.1038/326711a0.
[35]  Jones, K.A.; Kadonaga, J.T.; Luciw, P.A.; Tjian, R. Activation of the aids retrovirus promoter by the cellular transcription factor, sp1. Science 1986, 232, 755–759.
[36]  Olsen, H.S.; Rosen, C.A. Contribution of the tata motif to tat-mediated transcriptional activation of human immunodeficiency virus gene expression. J. Virol. 1992, 66, 5594–5597.
[37]  Verhoef, K.; Koper, M.; Berkhout, B. Determination of the minimal amount of tat activity required for human immunodeficiency virus type 1 replication. Virology 1997, 237, 228–236, doi:10.1006/viro.1997.8786.
[38]  McCutchan, F.E.; Salminen, M.O.; Carr, J.K.; Burke, D.S. Hiv-1 genetic diversity. AIDS 1996, 10, S13–S20, doi:10.1097/00002030-199601001-00003.
[39]  Simon, F.; Mauclere, P.; Roques, P.; Loussert-Ajaka, I.; Muller-Trutwin, M.C.; Saragosti, S.; Georges-Courbot, M.C.; Barre-Sinoussi, F.; Brun-Vezinet, F. Identification of a new human immunodeficiency virus type 1 distinct from group m and group o. Nat. Med. 1998, 4, 1032–1037, doi:10.1038/2017.
[40]  Jeeninga, R.E.; Hoogenkamp, M.; Armand-Ugon, M.; de Baar, M.; Verhoef, K.; Berkhout, B. Functional differences between the long terminal repeat transcriptional promoters of human immunodeficiency virus type 1 subtypes a through g. J. Virol. 2000, 74, 3740–3751, doi:10.1128/JVI.74.8.3740-3751.2000.
[41]  Montano, M.A.; Novitsky, V.A.; Blackard, J.T.; Cho, N.L.; Katzenstein, D.A.; Essex, M. Divergent transcriptional regulation among expanding human immunodeficiency virus type 1 subtypes. J. Virol. 1997, 71, 8657–8665.
[42]  Irish, B.P.; Khan, Z.K.; Jain, P.; Nonnemacher, M.R.; Pirrone, V.; Rahman, S.; Rajagopalan, N.; Suchitra, J.B.; Mostoller, K.; Wigdahl, B. Molecular mechanisms of neurodegenerative diseases induced by human retroviruses: A review. Am. J. Infect. Dis. 2009, 5, 231–258, doi:10.3844/ajidsp.2009.231.258.
[43]  Rappaport, J.; Joseph, J.; Croul, S.; Alexander, G.; Del Valle, L.; Amini, S.; Khalili, K. Molecular pathway involved in hiv-1-induced cns pathology: Role of viral regulatory protein, tat. J. Leukoc. Biol. 1999, 65, 458–465.
[44]  Stevens, M.; de Clercq, E.; Balzarini, J. The regulation of hiv-1 transcription: Molecular targets for chemotherapeutic intervention. Med. Res. Rev. 2006, 26, 595–625, doi:10.1002/med.20081.
[45]  Klebl, B.M.; Choidas, A. Cdk9/cyclin t1: A host cell target for antiretroviral therapy. Future Virol. 2006, 1, 317–330, doi:10.2217/17460794.1.3.317.
[46]  Wang, S.; Fischer, P.M. Cyclin-dependent kinase 9: A key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends Pharmacol. Sci. 2008, 29, 302–313, doi:10.1016/j.tips.2008.03.003.
[47]  Coley, W.; Kehn-Hall, K.; van Duyne, R.; Kashanchi, F. Novel hiv-1 therapeutics through targeting altered host cell pathways. Expert Opin. Biol. Ther. 2009, 9, 1369–1382, doi:10.1517/14712590903257781.
[48]  Nemeth, G.; Varga, Z.; Greff, Z.; Bencze, G.; Sipos, A.; Szantai-Kis, C.; Baska, F.; Gyuris, A.; Kelemenics, K.; Szathmary, Z.; et al. Novel, selective cdk9 inhibitors for the treatment of hiv infection. Curr Med. Chem. 2011, 18, 342–358.
[49]  Baumli, S.; Lolli, G.; Lowe, E.D.; Troiani, S.; Rusconi, L.; Bullock, A.N.; Debreczeni, J.E.; Knapp, S.; Johnson, L.N. The structure of p-tefb (cdk9/cyclin t1), its complex with flavopiridol and regulation by phosphorylation. EMBO J. 2008, 27, 1907–1918, doi:10.1038/emboj.2008.121.
[50]  Chao, S.H.; Fujinaga, K.; Marion, J.E.; Taube, R.; Sausville, E.A.; Senderowicz, A.M.; Peterlin, B.M.; Price, D.H. Flavopiridol inhibits p-tefb and blocks hiv-1 replication. J. Biol. Chem. 2000, 275, 28345–28348.
[51]  Ali, A.; Ghosh, A.; Nathans, R.S.; Sharova, N.; O'Brien, S.; Cao, H.; Stevenson, M.; Rana, T.M. Identification of flavopiridol analogues that selectively inhibit positive transcription elongation factor (p-tefb) and block hiv-1 replication. Chembiochem 2009, 10, 2072–2080, doi:10.1002/cbic.200900303.
[52]  Heredia, A.; Davis, C.; Bamba, D.; Le, N.; Gwarzo, M.Y.; Sadowska, M.; Gallo, R.C.; Redfield, R.R. Indirubin-3'-monoxime, a derivative of a chinese antileukemia medicine, inhibits p-tefb function and hiv-1 replication. AIDS 2005, 19, 2087–2095, doi:10.1097/01.aids.0000194805.74293.11.
[53]  Toossi, Z.; Wu, M.; Hirsch, C.S.; Mayanja-Kizza, H.; Baseke, J.; Aung, H.; Canaday, D.H.; Fujinaga, K. Activation of p-tefb at sites of dual hiv/tb infection, and inhibition of mtb-induced hiv transcriptional activation by the inhibitor of cdk9, indirubin-3'-monoxime. AIDS Res. Hum. Retroviruses 2012, 28, 182–187, doi:10.1089/aid.2010.0211.
[54]  Biglione, S.; Byers, S.A.; Price, J.P.; Nguyen, V.T.; Bensaude, O.; Price, D.H.; Maury, W. Inhibition of hiv-1 replication by p-tefb inhibitors drb, seliciclib and flavopiridol correlates with release of free p-tefb from the large, inactive form of the complex. Retrovirology 2007, 4, 47, doi:10.1186/1742-4690-4-47.
[55]  Agbottah, E.; de La Fuente, C.; Nekhai, S.; Barnett, A.; Gianella-Borradori, A.; Pumfery, A.; Kashanchi, F. Antiviral activity of cyc202 in hiv-1-infected cells. J. Biol. Chem. 2005, 280, 3029–3042.
[56]  Debebe, Z.; Ammosova, T.; Breuer, D.; Lovejoy, D.B.; Kalinowski, D.S.; Kumar, K.; Jerebtsova, M.; Ray, P.; Kashanchi, F.; Gordeuk, V.R.; et al. Iron chelators of the di-2-pyridylketone thiosemicarbazone and 2-benzoylpyridine thiosemicarbazone series inhibit hiv-1 transcription: Identification of novel cellular targets--iron, cyclin-dependent kinase (cdk) 2, and cdk9. Mol. Pharmacol. 2011, 79, 185–196, doi:10.1124/mol.110.069062.
[57]  Bai, J.; Sui, J.; Zhu, R.Y.; Tallarico, A.S.; Gennari, F.; Zhang, D.; Marasco, W.A. Inhibition of tat-mediated transactivation and hiv-1 replication by human anti-hcyclint1 intrabodies. J. Biol. Chem. 2003, 278, 1433–1442.
[58]  Sung, T.L.; Rice, A.P. Mir-198 inhibits hiv-1 gene expression and replication in monocytes and its mechanism of action appears to involve repression of cyclin t1. PLoS Pathog. 2009, 5, e1000263, doi:10.1371/journal.ppat.1000263.
[59]  Jadlowsky, J.K.; Nojima, M.; Schulte, A.; Geyer, M.; Okamoto, T.; Fujinaga, K. Dominant negative mutant cyclin t1 proteins inhibit hiv transcription by specifically degrading tat. Retrovirology 2008, 5, 63, doi:10.1186/1742-4690-5-63.
[60]  Jadlowsky, J.K.; Nojima, M.; Okamoto, T.; Fujinaga, K. Dominant negative mutant cyclin t1 proteins that inhibit hiv transcription by forming a kinase inactive complex with tat. J. Gen. Virol. 2008, 89, 2783–2787, doi:10.1099/vir.0.2008/002857-0.
[61]  Hoque, M.; Tian, B.; Mathews, M.B.; Pe'ery, T. Granulin and granulin repeats interact with the tat.P-tefb complex and inhibit tat transactivation. J. Biol. Chem. 2005, 280, 13648–13657.
[62]  Hoque, M.; Young, T.M.; Lee, C.G.; Serrero, G.; Mathews, M.B.; Pe'ery, T. The growth factor granulin interacts with cyclin t1 and modulates p-tefb-dependent transcription. Mol. Cell. Biol. 2003, 23, 1688–1702.
[63]  Fraldi, A.; Varrone, F.; Napolitano, G.; Michels, A.A.; Majello, B.; Bensaude, O.; Lania, L. Inhibition of tat activity by the hexim1 protein. Retrovirology 2005, 2, 42, doi:10.1186/1742-4690-2-42.
[64]  Young, T.M.; Wang, Q.; Pe'ery, T.; Mathews, M.B. The human i-mfa domain-containing protein, hic, interacts with cyclin t1 and modulates p-tefb-dependent transcription. Mol. Cell. Biol. 2003, 23, 6373–6384, doi:10.1128/MCB.23.18.6373-6384.2003.
[65]  Deng, L.; Ammosova, T.; Pumfery, A.; Kashanchi, F.; Nekhai, S. Hiv-1 tat interaction with rna polymerase ii c-terminal domain (ctd) and a dynamic association with cdk2 induce ctd phosphorylation and transcription from hiv-1 promoter. J. Biol. Chem. 2002, 277, 33922–33929.
[66]  Nekhai, S.; Zhou, M.; Fernandez, A.; Lane, W.S.; Lamb, N.J.; Brady, J.; Kumar, A. Hiv-1 tat-associated rna polymerase c-terminal domain kinase, cdk2, phosphorylates cdk7 and stimulates tat-mediated transcription. Biochem. J. 2002, 364, 649–657, doi:10.1042/BJ20011191.
[67]  Pumfery, A.; de la Fuente, C.; Berro, R.; Nekhai, S.; Kashanchi, F.; Chao, S.H. Potential use of pharmacological cyclin-dependent kinase inhibitors as anti-hiv therapeutics. Curr. Pharm. Des. 2006, 12, 1949–1961, doi:10.2174/138161206777442083.
[68]  Guendel, I.; Agbottah, E.T.; Kehn-Hall, K.; Kashanchi, F. Inhibition of human immunodeficiency virus type-1 by cdk inhibitors. AIDS Res. Ther. 2010, 7, 7, doi:10.1186/1742-6405-7-7.
[69]  Ammosova, T.; Berro, R.; Kashanchi, F.; Nekhai, S. Rna interference directed to cdk2 inhibits hiv-1 transcription. Virology 2005, 341, 171–178, doi:10.1016/j.virol.2005.06.041.
[70]  Agbottah, E.; Zhang, N.; Dadgar, S.; Pumfery, A.; Wade, J.D.; Zeng, C.; Kashanchi, F. Inhibition of hiv-1 virus replication using small soluble tat peptides. Virology 2006, 345, 373–389, doi:10.1016/j.virol.2005.09.062.
[71]  Van Duyne, R.; Cardenas, J.; Easley, R.; Wu, W.; Kehn-Hall, K.; Klase, Z.; Mendez, S.; Zeng, C.; Chen, H.; Saifuddin, M.; et al. Effect of transcription peptide inhibitors on hiv-1 replication. Virology 2008, 376, 308–322, doi:10.1016/j.virol.2008.02.036.
[72]  Stevens, M.; Balzarini, J.; Lagoja, I.M.; Noppen, B.; Francois, K.; van Aerschot, A.; Herdewijn, P.; de Clercq, E.; Pannecouque, C. Inhibition of human immunodeficiency virus type 1 transcription by n-aminoimidazole derivatives. Virology 2007, 365, 220–237, doi:10.1016/j.virol.2007.03.036.
[73]  Karn, J. Tackling tat. J. Mol. Biol. 1999, 293, 235–254, doi:10.1006/jmbi.1999.3060.
[74]  Baba, M. Recent status of hiv-1 gene expression inhibitors. Antiviral Res. 2006, 71, 301–306, doi:10.1016/j.antiviral.2006.01.002.
[75]  Gnabre, J.N.; Brady, J.N.; Clanton, D.J.; Ito, Y.; Dittmer, J.; Bates, R.B.; Huang, R.C. Inhibition of human immunodeficiency virus type 1 transcription and replication by DNA sequence-selective plant lignans. Proc. Natl. Acad. Sci. USA 1995, 92, 11239–11243.
[76]  Huang, R.C.; Li, Y.; Giza, P.E.; Gnabre, J.N.; Abd-Elazem, I.S.; King, K.Y.; Hwu, J.R. Novel antiviral agent tetraglycylated nordihydroguaiaretic acid hydrochloride as a host-dependent viral inhibitor. Antiviral Res. 2003, 58, 57–64, doi:10.1016/S0166-3542(02)00189-4.
[77]  Hwu, J.R.; Tseng, W.N.; Gnabre, J.; Giza, P.; Huang, R.C. Antiviral activities of methylated nordihydroguaiaretic acids. 1. Synthesis, structure identification, and inhibition of tat-regulated hiv transactivation. J. Med. Chem. 1998, 41, 2994–3000, doi:10.1021/jm970819w.
[78]  Bedoya, L.M.; Abad, M.J.; Calonge, E.; Saavedra, L.A.; Gutierrez, C.M.; Kouznetsov, V.V.; Alcami, J.; Bermejo, P. Quinoline-based compounds as modulators of hiv transcription through nf-kappab and sp1 inhibition. Antiviral Res. 2010, 87, 338–344, doi:10.1016/j.antiviral.2010.06.006.
[79]  Osorio, A.A.; Munoz, A.; Torres-Romero, D.; Bedoya, L.M.; Perestelo, N.R.; Jimenez, I.A.; Alcami, J.; Bazzocchi, I.L. Olean-18-ene triterpenoids from celastraceae species inhibit hiv replication targeting nf-kb and sp1 dependent transcription. Eur J. Med. Chem. 2012, 52, 295–303, doi:10.1016/j.ejmech.2012.03.035.
[80]  Takada, N.; Sanda, T.; Okamoto, H.; Yang, J.P.; Asamitsu, K.; Sarol, L.; Kimura, G.; Uranishi, H.; Tetsuka, T.; Okamoto, T. Rela-associated inhibitor blocks transcription of human immunodeficiency virus type 1 by inhibiting nf-kappab and sp1 actions. J. Virol. 2002, 76, 8019–8030.
[81]  Pande, V.; Ramos, M.J. Nuclear factor kappa b: A potential target for anti-hiv chemotherapy. Curr. Med. Chem. 2003, 10, 1603–1615, doi:10.2174/0929867033457250.
[82]  Fujiwara, N.; Nakajima, T.; Ueda, Y.; Fujita, H.; Kawakami, H. Novel piperidinylpyrimidine derivatives as inhibitors of hiv-1 ltr activation. Bioorg. Med. Chem. 2008, 16, 9804–9816, doi:10.1016/j.bmc.2008.09.059.
[83]  Haraguchi, S.; Day, N.K.; Kamchaisatian, W.; Beigier-Pompadre, M.; Stenger, S.; Tangsinmankong, N.; Sleasman, J.W.; Pizzo, S.V.; Cianciolo, G.J. Lmp-420, a small-molecule inhibitor of tnf-alpha, reduces replication of hiv-1 and mycobacterium tuberculosis in human cells. AIDS Res. Ther. 2006, 3, 8, doi:10.1186/1742-6405-3-8.
[84]  Biswas, D.K.; Dezube, B.J.; Ahlers, C.M.; Pardee, A.B. Pentoxifylline inhibits hiv-1 ltr-driven gene expression by blocking nf-kappa b action. J. Acquir. Immune. Defic. Syndr. 1993, 6, 778–786.
[85]  Fazely, F.; Dezube, B.J.; Allen-Ryan, J.; Pardee, A.B.; Ruprecht, R.M. Pentoxifylline (trental) decreases the replication of the human immunodeficiency virus type 1 in human peripheral blood mononuclear cells and in cultured t cells. Blood 1991, 77, 1653–1656.
[86]  Navarro, J.; Punzon, M.C.; Pizarro, A.; Fernandez-Cruz, E.; Fresno, M.; Munoz-Fernandez, M.A. Pentoxifylline inhibits acute hiv-1 replication in human t cells by a mechanism not involving inhibition of tumour necrosis factor synthesis or nuclear factor-kappa b activation. AIDS 1996, 10, 469–475, doi:10.1097/00002030-199605000-00004.
[87]  Smith, J.A.; Nunnari, G.; Preuss, M.; Pomerantz, R.J.; Daniel, R. Pentoxifylline suppresses transduction by hiv-1-based vectors. Intervirology 2007, 50, 377–386, doi:10.1159/000109752.
[88]  Asamitsu, K.; Yamaguchi, T.; Nakata, K.; Hibi, Y.; Victoriano, A.F.; Imai, K.; Onozaki, K.; Kitade, Y.; Okamoto, T. Inhibition of human immunodeficiency virus type 1 replication by blocking ikappab kinase with noraristeromycin. J. Biochem. 2008, 144, 581–589, doi:10.1093/jb/mvn104.
[89]  Balasubramanyam, K.; Varier, R.A.; Altaf, M.; Swaminathan, V.; Siddappa, N.B.; Ranga, U.; Kundu, T.K. Curcumin, a novel p300/creb-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem. 2004, 279, 51163–51171.
[90]  Mantelingu, K.; Reddy, B.A.; Swaminathan, V.; Kishore, A.H.; Siddappa, N.B.; Kumar, G.V.; Nagashankar, G.; Natesh, N.; Roy, S.; Sadhale, P.P.; et al. Specific inhibition of p300-hat alters global gene expression and represses hiv replication. Chem. Biol. 2007, 14, 645–657, doi:10.1016/j.chembiol.2007.04.011.
[91]  Sarli, V.; Giannis, A. Selective inhibition of cbp/p300 hat. Chem. Biol. 2007, 14, 605–606, doi:10.1016/j.chembiol.2007.06.001.
[92]  Dorr, A.; Kiermer, V.; Pedal, A.; Rackwitz, H.R.; Henklein, P.; Schubert, U.; Zhou, M.M.; Verdin, E.; Ott, M. Transcriptional synergy between tat and pcaf is dependent on the binding of acetylated tat to the pcaf bromodomain. EMBO J. 2002, 21, 2715–2723, doi:10.1093/emboj/21.11.2715.
[93]  Zeng, L.; Li, J.; Muller, M.; Yan, S.; Mujtaba, S.; Pan, C.; Wang, Z.; Zhou, M.M. Selective small molecules blocking hiv-1 tat and coactivator pcaf association. J. Am. Chem. Soc. 2005, 127, 2376–2377.
[94]  Pan, C.; Mezei, M.; Mujtaba, S.; Muller, M.; Zeng, L.; Li, J.; Wang, Z.; Zhou, M.M. Structure-guided optimization of small molecules inhibiting human immunodeficiency virus 1 tat association with the human coactivator p300/creb binding protein-associated factor. J. Med. Chem. 2007, 50, 2285–2288, doi:10.1021/jm070014g.
[95]  Zhang, H.S.; Sang, W.W.; Ruan, Z.; Wang, Y.O. Akt/nox2/nf-kappab signaling pathway is involved in tat-induced hiv-1 long terminal repeat (ltr) transactivation. Arch. Biochem. Biophys. 2011, 505, 266–272, doi:10.1016/j.abb.2010.10.018.
[96]  Zhang, H.S.; Wu, T.C.; Sang, W.W.; Ruan, Z. Egcg inhibits tat-induced ltr transactivation: Role of nrf2, akt, ampk signaling pathway. Life Sci. 2012, 90, 747–754, doi:10.1016/j.lfs.2012.03.013.
[97]  Lin, P.H.; Ke, Y.Y.; Su, C.T.; Shiao, H.Y.; Hsieh, H.P.; Chao, Y.K.; Lee, C.N.; Kao, C.L.; Chao, Y.S.; Chang, S.Y. Inhibition of hiv-1 tat-mediated transcription by a coumarin derivative, bprhiv001, through the akt pathway. J. Virol. 2011, 85, 9114–9126, doi:10.1128/JVI.00175-11.
[98]  Guendel, I.; Carpio, L.; Easley, R.; van Duyne, R.; Coley, W.; Agbottah, E.; Dowd, C.; Kashanchi, F.; Kehn-Hall, K. 9-aminoacridine inhibition of hiv-1 tat dependent transcription. Virol. J. 2009, 6, 114, doi:10.1186/1743-422X-6-114.
[99]  Ammosova, T.; Jerebtsova, M.; Beullens, M.; Voloshin, Y.; Ray, P.E.; Kumar, A.; Bollen, M.; Nekhai, S. Nuclear protein phosphatase-1 regulates hiv-1 transcription. J. Biol. Chem. 2003, 278, 32189–32194.
[100]  Ammosova, T.; Yedavalli, V.R.; Niu, X.; Jerebtsova, M.; van Eynde, A.; Beullens, M.; Bollen, M.; Jeang, K.T.; Nekhai, S. Expression of a protein phosphatase 1 inhibitor, cdnipp1, increases cdk9 threonine 186 phosphorylation and inhibits hiv-1 transcription. J. Biol. Chem. 2011, 286, 3798–3804.
[101]  Ammosova, T.; Platonov, M.; Yedavalli, V.R.; Obukhov, Y.; Gordeuk, V.R.; Jeang, K.T.; Kovalskyy, D.; Nekhai, S. Small molecules targeted to a non-catalytic "rvxf" binding site of protein phosphatase-1 inhibit hiv-1. PLoS One 2012, 7, e39481.
[102]  Campagna, M.; Rivas, C. Antiviral activity of resveratrol. Biochem. Soc. Trans. 2010, 38, 50–53, doi:10.1042/BST0380050.
[103]  Lee, E.O.; Kim, S.E.; Park, H.K.; Kang, J.L.; Chong, Y.H. Extracellular hiv-1 tat upregulates tnf-alpha dependent mcp-1/ccl2 production via activation of erk1/2 pathway in rat hippocampal slice cultures: Inhibition by resveratrol, a polyphenolic phytostilbene. Exp. Neurol. 2011, 229, 399–408, doi:10.1016/j.expneurol.2011.03.006.
[104]  Zhang, H.S.; Zhou, Y.; Wu, M.R.; Zhou, H.S.; Xu, F. Resveratrol inhibited tat-induced hiv-1 ltr transactivation via nad(+)-dependent sirt1 activity. Life Sci. 2009, 85, 484–489, doi:10.1016/j.lfs.2009.07.014.
[105]  Pagans, S.; Pedal, A.; North, B.J.; Kaehlcke, K.; Marshall, B.L.; Dorr, A.; Hetzer-Egger, C.; Henklein, P.; Frye, R.; McBurney, M.W.; et al. Sirt1 regulates hiv transcription via tat deacetylation. PLoS Biol. 2005, 3, e41, doi:10.1371/journal.pbio.0030041.
[106]  Kwon, H.S.; Brent, M.M.; Getachew, R.; Jayakumar, P.; Chen, L.F.; Schnolzer, M.; McBurney, M.W.; Marmorstein, R.; Greene, W.C.; Ott, M. Human immunodeficiency virus type 1 tat protein inhibits the sirt1 deacetylase and induces t cell hyperactivation. Cell. Host Microbe 2008, 3, 158–167, doi:10.1016/j.chom.2008.02.002.
[107]  Richter, S.N.; Palu, G. Inhibitors of hiv-1 tat-mediated transactivation. Curr. Med. Chem. 2006, 13, 1305–1315, doi:10.2174/092986706776872989.
[108]  Turner, J.J.; Fabani, M.; Arzumanov, A.A.; Ivanova, G.; Gait, M.J. Targeting the hiv-1 rna leader sequence with synthetic oligonucleotides and sirna: Chemistry and cell delivery. Biochim. Biophys. Acta 2006, 1758, 290–300.
[109]  Burnett, J.C.; Rossi, J.J. Rna-based therapeutics: Current progress and future prospects. Chem. Biol. 2012, 19, 60–71, doi:10.1016/j.chembiol.2011.12.008.
[110]  Burnett, J.C.; Rossi, J.J. Stem cells, ribozymes and hiv. Gene Ther. 2009, 16, 1178–1179, doi:10.1038/gt.2009.86.
[111]  Mitsuyasu, R.T.; Merigan, T.C.; Carr, A.; Zack, J.A.; Winters, M.A.; Workman, C.; Bloch, M.; Lalezari, J.; Becker, S.; Thornton, L.; et al. Phase 2 gene therapy trial of an anti-hiv ribozyme in autologous cd34+ cells. Nat. Med. 2009, 15, 285–292, doi:10.1038/nm.1932.
[112]  Mulhbacher, J.; St-Pierre, P.; Lafontaine, D.A. Therapeutic applications of ribozymes and riboswitches. Curr. Opin. Pharmacol. 2010, 10, 551–556, doi:10.1016/j.coph.2010.07.002.
[113]  Zeller, S.J.; Kumar, P. Rna-based gene therapy for the treatment and prevention of hiv: From bench to bedside. Yale J. Biol. Med. 2011, 84, 301–309.
[114]  Eekels, J.J.; Berkhout, B. Toward a durable treatment of hiv-1 infection using rna interference. Prog. Mol. Biol. Transl. Sci. 2011, 102, 141–163, doi:10.1016/B978-0-12-415795-8.00001-5.
[115]  Zhou, J.; Rossi, J.J. Current progress in the development of rnai-based therapeutics for hiv-1. Gene Ther. 2011, 18, 1134–1138, doi:10.1038/gt.2011.149.
[116]  Scherer, L.; Rossi, J.J.; Weinberg, M.S. Progress and prospects: Rna-based therapies for treatment of hiv infection. Gene Ther. 2007, 14, 1057–1064, doi:10.1038/sj.gt.3302977.
[117]  Li, M.J.; Kim, J.; Li, S.; Zaia, J.; Yee, J.K.; Anderson, J.; Akkina, R.; Rossi, J.J. Long-term inhibition of hiv-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-hiv shrna, anti-ccr5 ribozyme, and a nucleolar-localizing tar decoy. Mol. Ther. 2005, 12, 900–909, doi:10.1016/j.ymthe.2005.07.524.
[118]  Anderson, J.; Li, M.J.; Palmer, B.; Remling, L.; Li, S.; Yam, P.; Yee, J.K.; Rossi, J.; Zaia, J.; Akkina, R. Safety and efficacy of a lentiviral vector containing three anti-hiv genes—ccr5 ribozyme, tat-rev sirna, and tar decoy—in scid-hu mouse-derived t cells. Mol. Ther. 2007, 15, 1182–1188.
[119]  DiGiusto, D.L.; Krishnan, A.; Li, L.; Li, H.; Li, S.; Rao, A.; Mi, S.; Yam, P.; Stinson, S.; Kalos, M.; et al. Rna-based gene therapy for hiv with lentiviral vector-modified cd34(+) cells in patients undergoing transplantation for aids-related lymphoma. Sci. Transl. Med. 2010, 2, 36–ra43, doi:10.1126/scitranslmed.3000931.
[120]  Kiem, H.P.; Wu, R.A.; Sun, G.; von Laer, D.; Rossi, J.J.; Trobridge, G.D. Foamy combinatorial anti-hiv vectors with mgmtp140k potently inhibit hiv-1 and shiv replication and mediate selection in vivo. Gene Ther. 2010, 17, 37–49, doi:10.1038/gt.2009.118.
[121]  Hamy, F.; Felder, E.R.; Heizmann, G.; Lazdins, J.; Aboul-ela, F.; Varani, G.; Karn, J.; Klimkait, T. An inhibitor of the tat/tar rna interaction that effectively suppresses hiv-1 replication. Proc. Natl. Acad. Sci. USA 1997, 94, 3548–3553.
[122]  Davidson, A.; Leeper, T.C.; Athanassiou, Z.; Patora-Komisarska, K.; Karn, J.; Robinson, J.A.; Varani, G. Simultaneous recognition of hiv-1 tar rna bulge and loop sequences by cyclic peptide mimics of tat protein. Proc. Natl. Acad. Sci. USA 2009, 106, 11931–11936.
[123]  Davidson, A.; Patora-Komisarska, K.; Robinson, J.A.; Varani, G. Essential structural requirements for specific recognition of hiv tar rna by peptide mimetics of tat protein. Nucleic Acids Res. 2011, 39, 248–256, doi:10.1093/nar/gkq713.
[124]  Lalonde, M.S.; Lobritz, M.A.; Ratcliff, A.; Chamanian, M.; Athanassiou, Z.; Tyagi, M.; Wong, J.; Robinson, J.A.; Karn, J.; Varani, G.; et al. Inhibition of both hiv-1 reverse transcription and gene expression by a cyclic peptide that binds the tat-transactivating response element (tar) rna. PLoS Pathog. 2011, 7, e1002038, doi:10.1371/journal.ppat.1002038.
[125]  D’Orso, I.; Grunwell, J.R.; Nakamura, R.L.; Das, C.; Frankel, A.D. Targeting tat inhibitors in the assembly of human immunodeficiency virus type 1 transcription complexes. J. Virol. 2008, 82, 9492–9504, doi:10.1128/JVI.00763-08.
[126]  Campbell, G.R.; Loret, E.P. What does the structure-function relationship of the hiv-1 tat protein teach us about developing an aids vaccine? Retrovirology 2009, 6, 50, doi:10.1186/1742-4690-6-50.
[127]  Goldstein, G. Hiv-1 tat protein as a potential aids vaccine. Nat. Med. 1996, 2, 960–964, doi:10.1038/nm0996-960.
[128]  Bellino, S.; Francavilla, V.; Longo, O.; Tripiciano, A.; Paniccia, G.; Arancio, A.; Fiorelli, V.; Scoglio, A.; Collacchi, B.; Campagna, M.; et al. Parallel conduction of the phase i preventive and therapeutic trials based on the tat vaccine candidate. Rev. Recent Clin. Trials 2009, 4, 195–204, doi:10.2174/157488709789957529.
[129]  Ensoli, B.; Bellino, S.; Tripiciano, A.; Longo, O.; Francavilla, V.; Marcotullio, S.; Cafaro, A.; Picconi, O.; Paniccia, G.; Scoglio, A.; et al. Therapeutic immunization with hiv-1 tat reduces immune activation and loss of regulatory t-cells and improves immune function in subjects on haart. PLoS One 2010, 5, e13540.
[130]  Ensoli, B.; Fiorelli, V.; Ensoli, F.; Lazzarin, A.; Visintini, R.; Narciso, P.; di Carlo, A.; Monini, P.; Magnani, M.; Garaci, E. The therapeutic phase i trial of the recombinant native hiv-1 tat protein. AIDS 2008, 22, 2207–2209, doi:10.1097/QAD.0b013e32831392d4.
[131]  Gavioli, R.; Cellini, S.; Castaldello, A.; Voltan, R.; Gallerani, E.; Gagliardoni, F.; Fortini, C.; Cofano, E.B.; Triulzi, C.; Cafaro, A.; et al. The tat protein broadens t cell responses directed to the hiv-1 antigens gag and env: Implications for the design of new vaccination strategies against aids. Vaccine 2008, 26, 727–737, doi:10.1016/j.vaccine.2007.11.040.
[132]  Longo, O.; Tripiciano, A.; Fiorelli, V.; Bellino, S.; Scoglio, A.; Collacchi, B.; Alvarez, M.J.; Francavilla, V.; Arancio, A.; Paniccia, G.; et al. Phase i therapeutic trial of the hiv-1 tat protein and long term follow-up. Vaccine 2009, 27, 3306–3312, doi:10.1016/j.vaccine.2009.01.090.
[133]  Goldstein, G.; Chicca, J. Exploratory clinical studies of a synthetic hiv-1 tat epitope vaccine in asymptomatic treatment-naive and antiretroviral-controlled hiv-1 infected subjects plus healthy uninfected subjects. Hum. Vaccin Immunother. 2012, 8, 479–485.
[134]  Goldstein, G.; Chicca, J.J., 2nd. A universal anti-hiv-1 tat epitope vaccine that is fully synthetic and self-adjuvanting. Vaccine 2010, 28, 1008–1014, doi:10.1016/j.vaccine.2009.10.129.
[135]  Allard, S.D.; de Keersmaecker, B.; de Goede, A.L.; Verschuren, E.J.; Koetsveld, J.; Reedijk, M.L.; Wylock, C.; de Bel, A.V.; Vandeloo, J.; Pistoor, F.; et al. A phase i/iia immunotherapy trial of hiv-1-infected patients with tat, rev and nef expressing dendritic cells followed by treatment interruption. Clin. Immunol. 2012, 142, 252–268, doi:10.1016/j.clim.2011.10.010.
[136]  Mediouni, S.; Watkins, J.D.; Pierres, M.; Bole, A.; Loret, E.P.; Baillat, G. A monoclonal antibody directed against a conformational epitope of the hiv-1 trans-activator (tat) protein neutralizes cross-clade. J. Biol. Chem. 2012, 287, 11942–11950.
[137]  Kutsch, O.; Levy, D.N.; Bates, P.J.; Decker, J.; Kosloff, B.R.; Shaw, G.M.; Priebe, W.; Benveniste, E.N. Bis-anthracycline antibiotics inhibit human immunodeficiency virus type 1 transcription. Antimicrob. Agents Chemother. 2004, 48, 1652–1663, doi:10.1128/AAC.48.5.1652-1663.2004.
[138]  Mischiati, C.; Jeang, K.T.; Feriotto, G.; Breda, L.; Borgatti, M.; Bianchi, N.; Gambari, R. Aromatic polyamidines inhibiting the tat-induced hiv-1 transcription recognize structured tar-rna. Antisense Nucleic Acid Drug Dev. 2001, 11, 209–217, doi:10.1089/108729001317022214.
[139]  Yu, X.; Lin, W.; Li, J.; Yang, M. Synthesis and biological evaluation of novel beta-carboline derivatives as tat-tar interaction inhibitors. Bioorg. Med. Chem. Lett. 2004, 14, 3127–3130.
[140]  Yu, X.; Lin, W.; Pang, R.; Yang, M. Design, synthesis and bioactivities of tar rna targeting beta-carboline derivatives based on tat-tar interaction. Eur. J. Med. Chem. 2005, 40, 831–839, doi:10.1016/j.ejmech.2005.01.012.
[141]  Ankel, H.; Turriziani, O.; Antonelli, G. Prostaglandin a inhibits replication of human immunodeficiency virus during acute infection. J. Gen. Virol. 1991, 72, 2797–2800, doi:10.1099/0022-1317-72-11-2797.
[142]  Hughes-Fulford, M.; McGrath, M.S.; Hanks, D.; Erickson, S.; Pulliam, L. Effects of dimethyl prostaglandin a1 on herpes simplex virus and human immunodeficiency virus replication. Antimicrob. Agents Chemother. 1992, 36, 2253–2258, doi:10.1128/AAC.36.10.2253.
[143]  Rozera, C.; Carattoli, A.; de Marco, A.; Amici, C.; Giorgi, C.; Santoro, M.G. Inhibition of hiv-1 replication by cyclopentenone prostaglandins in acutely infected human cells. Evidence for a transcriptional block. J. Clin. Invest. 1996, 97, 1795–1803, doi:10.1172/JCI118609.
[144]  Li, C.J.; Zhang, L.J.; Dezube, B.J.; Crumpacker, C.S.; Pardee, A.B. Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication. Proc. Natl. Acad. Sci. USA 1993, 90, 1839–1842, doi:10.1073/pnas.90.5.1839.
[145]  Valente, S.T.; Gilmartin, G.M.; Venkatarama, K.; Arriagada, G.; Goff, S.P. Hiv-1 mrna 3' end processing is distinctively regulated by eif3f, cdk11, and splice factor 9g8. Mol. Cell. 2009, 36, 279–289, doi:10.1016/j.molcel.2009.10.004.
[146]  Mousseau, G.; Clementz, M.A.; Bakeman, W.N.; Nagarsheth, N.; Cameron, M.; Shi, J.; Baran, P.; Fromentin, R.; Chomont, N.; Valente, S.T. An analog of the natural steroidal alkaloid cortistatin a potently suppresses tat-dependent hiv transcription. Cell. Host Microbe 2012, 12, 97–108, doi:10.1016/j.chom.2012.05.016.
[147]  Mei, H.Y.; Mack, D.P.; Galan, A.A.; Halim, N.S.; Heldsinger, A.; Loo, J.A.; Moreland, D.W.; Sannes-Lowery, K.A.; Sharmeen, L.; Truong, H.N.; et al. Discovery of selective, small-molecule inhibitors of rna complexes—i. The tat protein/tar rna complexes required for hiv-1 transcription. Bioorg. Med. Chem. 1997, 5, 1173–1184, doi:10.1016/S0968-0896(97)00064-3.
[148]  Xavier, K.A.; Eder, P.S.; Giordano, T. Rna as a drug target: Methods for biophysical characterization and screening. Trends Biotechnol. 2000, 18, 349–356, doi:10.1016/S0167-7799(00)01464-5.
[149]  Gelus, N.; Bailly, C.; Hamy, F.; Klimkait, T.; Wilson, W.D.; Boykin, D.W. Inhibition of hiv-1 tat-tar interaction by diphenylfuran derivatives: Effects of the terminal basic side chains. Bioorg. Med. Chem. 1999, 7, 1089–1096, doi:10.1016/S0968-0896(99)00041-3.
[150]  Hamy, F.; Brondani, V.; Florsheimer, A.; Stark, W.; Blommers, M.J.; Klimkait, T. A new class of hiv-1 tat antagonist acting through tat-tar inhibition. Biochemistry 1998, 37, 5086–5095.
[151]  Mei, H.-Y.; Galan, A.A.; Halim, N.S.; Mack, D.P.; Moreland, D.W.; Sanders, K.B.; Hoa, N.T.; Czarnik, A.W. Inhibition of an hiv-1 tat-derived peptide binding to tar rna by aminoglycoside antibiotics. Bioorg. Med. Chem. Lett. 1995, 5, 2755–2760, doi:10.1016/0960-894X(95)00467-8.
[152]  Hsu, M.C.; Schutt, A.D.; Holly, M.; Slice, L.W.; Sherman, M.I.; Richman, D.D.; Potash, M.J.; Volsky, D.J. Inhibition of hiv replication in acute and chronic infections In vitro by a tat antagonist. Science 1991, 254, 1799–1802.
[153]  Hsu, M.C.; Dhingra, U.; Earley, J.V.; Holly, M.; Keith, D.; Nalin, C.M.; Richou, A.R.; Schutt, A.D.; Tam, S.Y.; Potash, M.J.; et al. Inhibition of type 1 human immunodeficiency virus replication by a tat antagonist to which the virus remains sensitive after prolonged exposure In vitro. Proc. Natl. Acad. Sci. USA 1993, 90, 6395–6399.
[154]  Dunne, A.L.; Siregar, H.; Mills, J.; Crowe, S.M. Hiv replication in chronically infected macrophages is not inhibited by the tat inhibitors ro-5-3335 and ro-24-7429. J. Leukoc. Biol. 1994, 56, 369–373.
[155]  Witvrouw, M.; Pauwels, R.; Vandamme, A.M.; Schols, D.; Reymen, D.; Yamamoto, N.; Desmyter, J.; de Clercq, E. Cell type-specific anti-human immunodeficiency virus type 1 activity of the transactivation inhibitor ro5-3335. Antimicrob. Agents Chemother. 1992, 36, 2628–2633, doi:10.1128/AAC.36.12.2628.
[156]  Braddock, M.; Cannon, P.; Muckenthaler, M.; Kingsman, A.J.; Kingsman, S.M. Inhibition of human immunodeficiency virus type 1 tat-dependent activation of translation in xenopus oocytes by the benzodiazepine ro24-7429 requires trans-activation response element loop sequences. J. Virol. 1994, 68, 25–33.
[157]  Michne, W.F.; Schroeder, J.D.; Bailey, T.R.; Young, D.C.; Hughes, J.V.; Dutko, F.J. Keto/enol epoxy steroids: A new structural class of hiv-1 tat inhibitors. J. Med. Chem. 1993, 36, 2701–2702, doi:10.1021/jm00070a014.
[158]  Pang, R.; Zhang, C.; Yuan, D.; Yang, M. Design and sar of new substituted purines bearing aryl groups at n9 position as hiv-1 tat-tar interaction inhibitors. Bioorg. Med. Chem. 2008, 16, 8178–8186, doi:10.1016/j.bmc.2008.07.043.
[159]  Yuan, D.; He, M.; Pang, R.; Lin, S.S.; Li, Z.; Yang, M. The design, synthesis, and biological evaluation of novel substituted purines as hiv-1 tat-tar inhibitors. Bioorg. Med. Chem. 2007, 15, 265–272, doi:10.1016/j.bmc.2006.09.062.
[160]  Uchiumi, F.; Maruta, H.; Inoue, J.; Yamamoto, T.; Tanuma, S. Inhibitory effect of tannic acid on human immunodeficiency virus promoter activity induced by 12-o-tetra decanoylphorbol-13-acetate in jurkat t-cells. Biochem. Biophys. Res. Commun. 1996, 220, 411–417, doi:10.1006/bbrc.1996.0419.
[161]  Chandra, A.; Demirhan, I.; Arya, S.K.; Chandra, P. D-penicillamine inhibits transactivation of human immunodeficiency virus type-1 (hiv-1) ltr by transactivator protein. FEBS Lett. 1988, 236, 282–286, doi:10.1016/0014-5793(88)80038-3.
[162]  Chandra, P.; Sarin, P.S. Selective inhibition of replication of the aids-associated virus htlv-iii/lav by synthetic d-penicillamine. Arzneimittelforschung 1986, 36, 184–186.
[163]  Kalebic, T.; Schein, P.S. Organic thiophosphate wr-151327 suppresses expression of hiv in chronically infected cells. AIDS Res. Hum. Retroviruses 1994, 10, 727–733, doi:10.1089/aid.1994.10.727.
[164]  Li, C.J.; Wang, C.; Pardee, A.B. Camptothecin inhibits tat-mediated transactivation of type 1 human immunodeficiency virus. J. Biol.Chem. 1994, 269, 7051–7054.
[165]  Jayasuriya, H.; Lingham, R.B.; Graham, P.; Quamina, D.; Herranz, L.; Genilloud, O.; Gagliardi, M.; Danzeisen, R.; Tomassini, J.E.; Zink, D.L.; et al. Durhamycin a, a potent inhibitor of hiv tat transactivation. J. Nat. Prod. 2002, 65, 1091–1095, doi:10.1021/np010642f.
[166]  Jayasuriya, H.; Zink, D.L.; Polishook, J.D.; Bills, G.F.; Dombrowski, A.W.; Genilloud, O.; Pelaez, F.F.; Herranz, L.; Quamina, D.; Lingham, R.B.; et al. Identification of diverse microbial metabolites as potent inhibitors of hiv-1 tat transactivation. Chem. Biodivers. 2005, 2, 112–122, doi:10.1002/cbdv.200490162.
[167]  Uchiumi, F.; Hatano, T.; Ito, H.; Yoshida, T.; Tanuma, S. Transcriptional suppression of the hiv promoter by natural compounds. Antiviral Res. 2003, 58, 89–98, doi:10.1016/S0166-3542(02)00186-9.
[168]  Bedoya, L.M.; del Olmo, E.; Sancho, R.; Barboza, B.; Beltran, M.; Garcia-Cadenas, A.E.; Sanchez-Palomino, S.; Lopez-Perez, J.L.; Munoz, E.; San Feliciano, A.; et al. Anti-hiv activity of stilbene-related heterocyclic compounds. Bioorg. Med. Chem. Lett. 2006, 16, 4075–4079.
[169]  Bedoya, L.M.; Beltran, M.; Sancho, R.; Olmedo, D.A.; Sanchez-Palomino, S.; del Olmo, E.; Lopez-Perez, J.L.; Munoz, E.; San Feliciano, A.; Alcami, J. 4-phenylcoumarins as hiv transcription inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 4447–4450, doi:10.1016/j.bmcl.2005.07.041.
[170]  Barthelemy, S.; Vergnes, L.; Moynier, M.; Guyot, D.; Labidalle, S.; Bahraoui, E. Curcumin and curcumin derivatives inhibit tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat. Res. Virol. 1998, 149, 43–52, doi:10.1016/S0923-2516(97)86899-9.
[171]  Kalantari, P.; Narayan, V.; Henderson, A.J.; Prabhu, K.S. 15-deoxy-delta12,14-prostaglandin j2 inhibits hiv-1 transactivating protein, tat, through covalent modification. FASEB J. 2009, 23, 2366–2373, doi:10.1096/fj.08-124982.
[172]  Kim, S.E.; Lee, E.O.; Yang, J.H.; Kang, J.H.; Suh, Y.H.; Chong, Y.H. 15-deoxy-delta12,14-prostaglandin j2 inhibits human immunodeficiency virus-1 tat-induced monocyte chemoattractant protein-1/ccl2 production by blocking the extracellular signal-regulated kinase-1/2 signaling pathway independently of peroxisome proliferator-activated receptor-gamma and heme oxygenase-1 in rat hippocampal slices. J. Neurosci. Res. 2012, 90, 1732–1742, doi:10.1002/jnr.23051.
[173]  Narayan, V.; Ravindra, K.C.; Chiaro, C.; Cary, D.; Aggarwal, B.B.; Henderson, A.J.; Prabhu, K.S. Celastrol inhibits tat-mediated human immunodeficiency virus (hiv) transcription and replication. J. Mol. Biol. 2011, 410, 972–983, doi:10.1016/j.jmb.2011.04.013.
[174]  Baba, M.; Okamoto, M.; Takeuchi, H. Inhibition of human immunodeficiency virus type 1 replication in acutely and chronically infected cells by em2487, a novel substance produced by a streptomyces species. Antimicrob. Agents Chemother. 1999, 43, 2350–2355.
[175]  Shoji, S.; Furuishi, K.; Misumi, S.; Miyazaki, T.; Kino, M.; Yamataka, K. Thiamine disulfide as a potent inhibitor of human immunodeficiency virus (type-1) production. Biochem. Biophys. Res. Commun. 1994, 205, 967–975, doi:10.1006/bbrc.1994.2760.
[176]  Kira, T.; Hashimoto, K.; Baba, M.; Okamoto, T.; Shigeta, S. 2-glycineamide-5-chlorophenyl 2-pyrryl ketone, a non-benzodiazepin tat antagonist, is effective against acute and chronic hiv-1 infections in vitro. Antiviral Res. 1996, 32, 55–62, doi:10.1016/0166-3542(95)00980-9.
[177]  Chande, A.G.; Baba, M.; Mukhopadhyaya, R. Short communication: A single step assay for rapid evaluation of inhibitors targeting hiv type 1 tat-mediated long terminal repeat transactivation. AIDS Res. Hum. Retroviruses 2012, 28, 902–906, doi:10.1089/aid.2011.0228.
[178]  Wang, X.; Yamataka, K.; Okamoto, M.; Ikeda, S.; Baba, M. Potent and selective inhibition of tat-dependent hiv-1 replication in chronically infected cells by a novel naphthalene derivative jtk-101. Antivir. Chem. Chemother. 2007, 18, 201–211.
[179]  Davidson, A.; Begley, D.W.; Lau, C.; Varani, G. A small-molecule probe induces a conformation in hiv tar rna capable of binding drug-like fragments. J. Mol. Biol. 2011, 410, 984–996, doi:10.1016/j.jmb.2011.03.039.
[180]  Murchie, A.I.; Davis, B.; Isel, C.; Afshar, M.; Drysdale, M.J.; Bower, J.; Potter, A.J.; Starkey, I.D.; Swarbrick, T.M.; Mirza, S.; et al. Structure-based drug design targeting an inactive rna conformation: Exploiting the flexibility of hiv-1 tar rna. J. Mol. Biol. 2004, 336, 625–638, doi:10.1016/j.jmb.2003.12.028.
[181]  Hwang, S.; Tamilarasu, N.; Kibler, K.; Cao, H.; Ali, A.; Ping, Y.H.; Jeang, K.T.; Rana, T.M. Discovery of a small molecule tat-trans-activation-responsive rna antagonist that potently inhibits human immunodeficiency virus-1 replication. J. Biol. Chem. 2003, 278, 39092–39103.
[182]  Hamy, F.; Felder, E.; Lipson, K.; Klimkait, T. Merged screening for human immunodeficiency virus tat and rev inhibitors. J. Biomol. Screen. 2001, 6, 179–187, doi:10.1177/108705710100600308.
[183]  Hamy, F.; Gelus, N.; Zeller, M.; Lazdins, J.L.; Bailly, C.; Klimkait, T. Blocking hiv replication by targeting tat protein. Chem. Biol. 2000, 7, 669–676, doi:10.1016/S1074-5521(00)00012-0.
[184]  Hamasaki, K.; Ueno, A. Aminoglycoside antibiotics, neamine and its derivatives as potent inhibitors for the rna-protein interactions derived from hiv-1 activators. Bioorg. Med. Chem. Lett. 2001, 11, 591–594, doi:10.1016/S0960-894X(01)00005-1.
[185]  Yajima, S.; Shionoya, H.; Akagi, T.; Hamasaki, K. Neamine derivatives having a nucleobase with a lysine or an arginine as a linker, their synthesis and evaluation as potential inhibitors for hiv tar-tat. Bioorg. Med. Chem. 2006, 14, 2799–2809, doi:10.1016/j.bmc.2005.11.056.
[186]  Massari, S.; Daelemans, D.; Barreca, M.L.; Knezevich, A.; Sabatini, S.; Cecchetti, V.; Marcello, A.; Pannecouque, C.; Tabarrini, O. A 1,8-naphthyridone derivative targets the hiv-1 tat-mediated transcription and potently inhibits the hiv-1 replication. J. Med. Chem. 2010, 53, 641–648, doi:10.1021/jm901211d.
[187]  Parolin, C.; Gatto, B.; Del Vecchio, C.; Pecere, T.; Tramontano, E.; Cecchetti, V.; Fravolini, A.; Masiero, S.; Palumbo, M.; Palu, G. New anti-human immunodeficiency virus type 1 6-aminoquinolones: Mechanism of action. Antimicrob. Agents Chemother. 2003, 47, 889–896, doi:10.1128/AAC.47.3.889-896.2003.
[188]  Lind, K.E.; Du, Z.; Fujinaga, K.; Peterlin, B.M.; James, T.L. Structure-based computational database screening, In vitro assay, and nmr assessment of compounds that target tar rna. Chem. Biol. 2002, 9, 185–193, doi:10.1016/S1074-5521(02)00106-0.
[189]  Mayer, M.; James, T.L. Nmr-based characterization of phenothiazines as a rna binding scaffold. J. Am. Chem. Soc. 2004, 126, 4453–4460, doi:10.1021/ja0398870.
[190]  Renner, S.; Ludwig, V.; Boden, O.; Scheffer, U.; Gobel, M.; Schneider, G. New inhibitors of the tat-tar rna interaction found with a “fuzzy” pharmacophore model. Chembiochem 2005, 6, 1119–1125, doi:10.1002/cbic.200400376.
[191]  Filikov, A.V.; Mohan, V.; Vickers, T.A.; Griffey, R.H.; Cook, P.D.; Abagyan, R.A.; James, T.L. Identification of ligands for rna targets via structure-based virtual screening: Hiv-1 tar. J. Comput. Aided Mol. Des. 2000, 14, 593–610, doi:10.1023/A:1008121029716.
[192]  Schuller, A.; Suhartono, M.; Fechner, U.; Tanrikulu, Y.; Breitung, S.; Scheffer, U.; Gobel, M.W.; Schneider, G. The concept of template-based de novo design from drug-derived molecular fragments and its application to tar rna. J. Comput. Aided Mol. Des. 2008, 22, 59–68, doi:10.1007/s10822-007-9157-4.
[193]  Stelzer, A.C.; Frank, A.T.; Kratz, J.D.; Swanson, M.D.; Gonzalez-Hernandez, M.J.; Lee, J.; Andricioaei, I.; Markovitz, D.M.; Al-Hashimi, H.M. Discovery of selective bioactive small molecules by targeting an rna dynamic ensemble. Nat. Chem. Biol. 2011, 7, 553–559, doi:10.1038/nchembio.596.
[194]  Lapidot, A.; Berchanski, A.; Borkow, G. Insight into the mechanisms of aminoglycoside derivatives interaction with hiv-1 entry steps and viral gene transcription. FEBS J. 2008, 275, 5236–5257, doi:10.1111/j.1742-4658.2008.06657.x.
[195]  Litovchick, A.; Evdokimov, A.G.; Lapidot, A. Arginine-aminoglycoside conjugates that bind to hiv transactivation responsive element rna in vitro. FEBS Lett. 1999, 445, 73–79, doi:10.1016/S0014-5793(99)00092-7.
[196]  Litovchick, A.; Evdokimov, A.G.; Lapidot, A. Aminoglycoside-arginine conjugates that bind tar rna: Synthesis, characterization, and antiviral activity. Biochemistry 2000, 39, 2838–2852, doi:10.1021/bi9917885.
[197]  Litovchick, A.; Lapidot, A.; Eisenstein, M.; Kalinkovich, A.; Borkow, G. Neomycin b-arginine conjugate, a novel hiv-1 tat antagonist: Synthesis and anti-hiv activities. Biochemistry 2001, 40, 15612–15623, doi:10.1021/bi0108655.
[198]  Cabrera, C.; Gutierrez, A.; Blanco, J.; Barretina, J.; Litovchick, A.; Lapidot, A.; Evdokimov, A.G.; Clotet, B.; Este, J.A. Anti-human immunodeficiency virus activity of novel aminoglycoside-arginine conjugates at early stages of infection. AIDS Res. Hum. Retroviruses 2000, 16, 627–634, doi:10.1089/088922200308855.
[199]  Catani, M.V.; Corasaniti, M.T.; Ranalli, M.; Amantea, D.; Litovchick, A.; Lapidot, A.; Melino, G. The tat antagonist neomycin b hexa-arginine conjugate inhibits gp-120-induced death of human neuroblastoma cells. J. Neurochem. 2003, 84, 1237–1245, doi:10.1046/j.1471-4159.2003.01620.x.
[200]  Carriere, M.; Vijayabaskar, V.; Applefield, D.; Harvey, I.; Garneau, P.; Lorsch, J.; Lapidot, A.; Pelletier, J. Inhibition of protein synthesis by aminoglycoside-arginine conjugates. RNA 2002, 8, 1267–1279, doi:10.1017/S1355838202029059.
[201]  Turpin, J.A.; Buckheit, R.W., Jr.; Derse, D.; Hollingshead, M.; Williamson, K.; Palamone, C.; Osterling, M.C.; Hill, S.A.; Graham, L.; Schaeffer, C.A.; et al. Inhibition of acute-, latent-, and chronic-phase human immunodeficiency virus type 1 (hiv-1) replication by a bistriazoloacridone analog that selectively inhibits hiv-1 transcription. Antimicrob. Agents Chemother. 1998, 42, 487–494.
[202]  Tabarrini, O.; Massari, S.; Cecchetti, V. 6-desfluoroquinolones as hiv-1 tat-mediated transcription inhibitors. Future Med. Chem. 2010, 2, 1161–1180, doi:10.4155/fmc.10.208.
[203]  Baba, M.; Okamoto, M.; Makino, M.; Kimura, Y.; Ikeuchi, T.; Sakaguchi, T.; Okamoto, T. Potent and selective inhibition of human immunodeficiency virus type 1 transcription by piperazinyloxoquinoline derivatives. Antimicrob. Agents Chemother. 1997, 41, 1250–1255.
[204]  Witvrouw, M.; Daelemans, D.; Pannecouque, C.; Neyts, J.; Andrei, G.; Snoeck, R.; Vandamme, A.M.; Balzarini, J.; Desmyter, J.; Baba, M.; et al. Broad-spectrum antiviral activity and mechanism of antiviral action of the fluoroquinolone derivative k-12. Antivir. Chem. Chemother. 1998, 9, 403–411.
[205]  Okamoto, M.; Okamoto, T.; Baba, M. Inhibition of human immunodeficiency virus type 1 replication by combination of transcription inhibitor k-12 and other antiretroviral agents in acutely and chronically infected cells. Antimicrob. Agents Chemother. 1999, 43, 492–497.
[206]  Cecchetti, V.; Parolin, C.; Moro, S.; Pecere, T.; Filipponi, E.; Calistri, A.; Tabarrini, O.; Gatto, B.; Palumbo, M.; Fravolini, A.; Palu, G. 6-aminoquinolones as new potential anti-hiv agents. J. Med. Chem. 2000, 43, 3799–3802, doi:10.1021/jm9903390.
[207]  Richter, S.; Parolin, C.; Gatto, B.; Del Vecchio, C.; Brocca-Cofano, E.; Fravolini, A.; Palu, G.; Palumbo, M. Inhibition of human immunodeficiency virus type 1 tat-trans-activation-responsive region interaction by an antiviral quinolone derivative. Antimicrob. Agents Chemother. 2004, 48, 1895–1899.
[208]  Tabarrini, O.; Massari, S.; Sancineto, L.; Daelemans, D.; Sabatini, S.; Manfroni, G.; Cecchetti, V.; Pannecouque, C. Structural investigation of the naphthyridone scaffold: Identification of a 1,6-naphthyridone derivative with potent and selective anti-hiv activity. ChemMedChem 2011, 6, 1249–1257, doi:10.1002/cmdc.201100073.
[209]  Stevens, M.; Pollicita, M.; Pannecouque, C.; Verbeken, E.; Tabarrini, O.; Cecchetti, V.; Aquaro, S.; Perno, C.F.; Fravolini, A.; de Clercq, E.; Schols, D.; et al. Novel in vivo model for the study of human immunodeficiency virus type 1 transcription inhibitors: Evaluation of new 6-desfluoroquinolone derivatives. Antimicrob. Agents Chemother. 2007, 51, 1407–1413, doi:10.1128/AAC.01251-06.
[210]  Tabarrini, O.; Massari, S.; Daelemans, D.; Stevens, M.; Manfroni, G.; Sabatini, S.; Balzarini, J.; Cecchetti, V.; Pannecouque, C.; Fravolini, A. Structure-activity relationship study on anti-hiv 6-desfluoroquinolones. J. Med. Chem. 2008, 51, 5454–5458.
[211]  Tabarrini, O.; Stevens, M.; Cecchetti, V.; Sabatini, S.; Dell'Uomo, M.; Manfroni, G.; Palumbo, M.; Pannecouque, C.; de Clercq, E.; Fravolini, A. Structure modifications of 6-aminoquinolones with potent anti-hiv activity. J. Med. Chem. 2004, 47, 5567–5578, doi:10.1021/jm049721p.
[212]  Palmer, S.; Maldarelli, F.; Wiegand, A.; Bernstein, B.; Hanna, G.J.; Brun, S.C.; Kempf, D.J.; Mellors, J.W.; Coffin, J.M.; King, M.S. Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc. Natl. Acad. Sci. USA 2008, 105, 3879–3884.

Full-Text

comments powered by Disqus