All Title Author
Keywords Abstract

Insects  2011 

The Invertebrate Life of New Zealand: A Phylogeographic Approach

DOI: 10.3390/insects2030297

Keywords: range expansion, endemicity, pliocene, pleistocene, insect, species

Full-Text   Cite this paper   Add to My Lib

Abstract:

Phylogeography contributes to our knowledge of regional biotas by integrating spatial and genetic information. In New Zealand, comprising two main islands and hundreds of smaller ones, phylogeography has transformed the way we view our biology and allowed comparison with other parts of the world. Here we review studies on New Zealand terrestrial and freshwater invertebrates. We find little evidence of congruence among studies of different taxa; instead there are signatures of partitioning in many different regions and expansion in different directions. A number of studies have revealed unusually high genetic distances within putative species, and in those where other data confirm this taxonomy, the revealed phylogeographic structure contrasts with northern hemisphere continental systems. Some taxa show a signature indicative of Pliocene tectonic events encompassing land extension and mountain building, whereas others are consistent with range expansion following the last glacial maximum (LGM) of the Pleistocene. There is some indication that montane taxa are more partitioned than lowland ones, but this observation is obscured by a broad range of patterns within the sample of lowland/forest taxa. We note that several geophysical processes make similar phylogeographic predictions for the same landscape, rendering confirmation of the drivers of partitioning difficult. Future multi-gene analyses where applied to testable alternative hypotheses may help resolve further the rich evolutionary history of New Zealand’s invertebrates.

References

[1]  Avise, J.C. Phylogeography. The History and Formation of Species; Harvard University Press: Cambridge, MA, USA, 2000.
[2]  Cracraft, J. Species diversity, biogeography, and the evolution of biotas. Amer. Zoologist 1994, 34, 33–47.
[3]  Arbogast, B.S; Kenagy, G.J. Comparative phylogeography as an integrative approach to historical biogeography. J. Biogeogr. 2001, 28, 819–825.
[4]  Funk, V.A. Foundations of biogeography. In Revolutions in Historical Biogeography; Lomolino, M.V., Sax, D.F., Brown, J.H., Eds.; The University of Chicago Press: Chicago, IL, 2004; pp. 647–657.
[5]  Crisp, M.D.; Trewick, S.A.; Cook, L.G. Hypothesis testing in biogeography. Trends Ecol. Evol. 2011, 26, 66–72.
[6]  Page, R.D.M. Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 1994, 43, 58–77.
[7]  Knowles, L.L. Statistical phylogeography. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 593–612.
[8]  Knowles, L.L.; Maddison, W.P. Statistical phylogeography. Mol. Ecol. 2002, 11, 2623–35.
[9]  Ho, S.W.; Phillips, M.J.; Cooper, A.; Drummond, A.J. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol. Biol. Evol. 2005, 22, 1561–1568.
[10]  Penny, D. Relativity for molecular clocks. Nature 2005, 436, 183–184.
[11]  Waters, J.M.; Rowe, D.L.; Burridge, C.P.; Wallis, G.P. Gene trees versus species trees: reassessing life-history evolution in a freshwater fish radiation. Syst. Biol. 2010, 59, 504–517.
[12]  Neall, V.E.; Trewick, S.A. The age and origin of the pacific islands: A geological overview. Philos. T. Roy. Soc. B 2008, 363, 3293–3308.
[13]  Thorton, I. Island Colonization- the Origin and Development of Island Communities; Cambridge University Press: Cambridge, UK, 2007.
[14]  Diamond, J. New Zealand As An Archipelago: An International Perspective in Ecological Restoration of New Zealand's Islands; Department of Conservation: Auckland, New Zealand, 1990.
[15]  Quammen, D. The Song of the Dodo: Island Biogeography in an Age of Extinctions; Touchstone Press: New York, NY, USA, 1997.
[16]  Whittaker, R.J.; Fernández-Palacios, J.M. Island Biogeography: Ecology, Evolution, and Conservation, 2nd ed. ed.; Oxford University Press: Oxford, UK, 2007.
[17]  Waters, J.M.; Craw, D. Goodbye gondwana? New Zealand biogeography, geology, and the problem of circularity. Syst. Biol. 2006, 55, 351–356.
[18]  Trewick, S.A.; Paterson, A.M.; Campbell, H.J. Hello New Zealand. J. Biogeogr. 2007, 34, 1–6.
[19]  Didham, R.K. New Zealand: ‘fly-paper of the Pacific?’. The Weta 2005, 29, 1–5.
[20]  Campbell, H.; Hutching, G. In Search of Ancient New Zealand; Penguin: Auckland, New Zealand, 2007.
[21]  Landis, C.A.; Campbell, H.J.; Begg, J.G.; Mildenhall, D.C.; Paterson, A.M.; Trewick, S.A. The waipounamu erosion surface: Questioning the antiquity of the new zealand land surface and terrestrial fauna and flora. Geol. Mag. 2008, 145, 173–197.
[22]  Winkworth, R.C.; Wagstaff, S.J.; Glenny, D.; Lockhart, P.J. Evolution of the New Zealand mountain flora: origins, diversification and dispersal. Org. Divers. Evol. 2005, 5, 237–247.
[23]  Goldberg, J; Trewick, S.A.; Paterson, A.M. Evolution of New Zealand's terrestrial fauna: a review of molecular evidence. Philos. T. Roy. Soc. B 2008, 363, 3319–3334.
[24]  McDowall, R.M. Process and pattern in the biogeography of New Zealand—A global microcosm. J. Biogeogr. 2008, 35, 197–212.
[25]  Waters, J.M. Driven by the west wind drift? A synthesis of southern temperate marine biogeography, with new directions for dispersalism. J. Biogeogr. 2008, 35, 417–427.
[26]  Wallis, G.P.; Trewick, S.A. New Zealand phylogeography: evolution on a small continent. Mol. Ecol. 2009, 18, 3548–3580.
[27]  Trewick, S.A.; Gibb, G.C. Vicars, Tramps and the assembly of New Zealand avifauna: A review of molecular phylogenetic evidence. Ibis 2010, 152, 226–253.
[28]  Graham, I.J. A Continent on the Move: New Zealand Geosciences in the 21st Century; Geological Society of New Zealand: Wellington, NZ, 2008.
[29]  Gordon, D.P. The New Zealand Inventory of Biodiversity. Volume 2: Kingdom Animalia Chaetognatha, Ecdysozoa, Ichnofossils; Canterbury University Press: Christchurch, NZ, 2010.
[30]  Gibbs, G. Ghosts of Gondwana: The History of Life in New Zealand; Craig Potton Publishing: Nelson, NZ, 2006.
[31]  Trewick, S.A.; Morgan-Richards, M. New Zealand biology. In Encyclopedia of Islands; Gillespie, R.G., Clague, D.A., Eds.; University of California Press: Berkeley, CA, USA, 2009; pp. 665–673.
[32]  Waters, J.M.; Dijkstra, L.H.; Wallis, G.P. Biogeography of a southern hemisphere freshwater fish: how important is marine dispersal. Mol. Ecol. 2000, 9, 1815–1821.
[33]  Smith, P.J.; McVeagh, S.M.; Collier, K.J. Genetic diversity and historical population structure in the new zealand mayfly Acanthophlebia cruentata. Freshwater Biol. 2006, 51, 12–24.
[34]  Smith, P.J.; McVeagh, S.M.; Collier, K.J. Population-genetic structure in the New Zealand caddisfly orthopsyche fimbriata revealed with mitochondrial DNA. New Zeal. J. Mar. Fresh. Res. 2006, 40, 141–148.
[35]  Morgan-Richards, M.; Trewick, S.A.; Wallis, G.P. Characterization of a hybrid zone between two chromosomal races of the weta hemideina thoracica following a geologically recent volcanic eruption. Heredity 2000, 85, 586–592.
[36]  Buckley, T.R.; Marske, K.A.; Attanayake, D. Identifying glacial refugia in a geographic parthenogen using palaeoclimate modelling and phylogeography: the New Zealand stick insect argosarchus horridus (white). Mol. Ecol. 2009, 18, 4650–4663.
[37]  Trewick, S.A. Mitochondrial DNA sequences support allozyme evidence for cryptic radiation of new zealand peripatoides (onychophora). Mol. Ecol. 2000, 9, 269–281.
[38]  Leschen, R.A.B.; Buckley, T.R.; Harman, H.M.; Shulmeister, J. Determining the origin and age of the westland beech (nothofagus) gap, New Zealand, using fungus beetle genetics. Mol. Ecol. 2008, 17, 1256–1276.
[39]  McCulloch, G.A.; Wallis, G.P.; Waters, J.M. onset of glaciation drove simultaneous vicariant isolation of alpine insects in New Zealand. Evolution 2010, 64, 2033–2043.
[40]  Neiman, M.; Lively, C.M. Pleistocene glaciation is implicated in the phylogeographical structure of potamopyrgus antipodarum, a New Zealand snail. Mol. Ecol. 2004, 13, 3085–3098.
[41]  Marske, K.A.; Leschen, R.A.B.; Barker, G.M.; Buckley, T.R. Phylogeography and ecological niche modeling implicate coastal refugia and trans-alpine dispersal of a New Zealand fungus beetle. Mol. Ecol. 2009, 18, 5126–5142.
[42]  Hill, K.B.R.; Simon, C.; Marshall, D.C.; Chambers, G.K. Surviving glacial ages within the biotic gap: phylogeography of the New Zealand cicada maoricicada campbelli. J. Biogeogr. 2009, 36, 675–692.
[43]  Buckley, T.R.; Simon, C.; Chambers, G.K. Phylogeography of the New Zealand cicada maoricicada campbelli based on mitochondrial DNA sequences: ancient clades associated with cenozoic environmental change. Evolution 2001, 55, 1395–1407.
[44]  Morgan-Richards, M.; Daugherty, C.H.; Gibbs, G. Taxonomic status of tree weta from stephens island, Mt Holdsworth and Mt Arthur, based on allozyme variation. J. Roy. Soc. New Zeal. 1995, 25, 301–312.
[45]  Morgan-Richards, M. Robertsonian translocations and b chromosomes in the wellington tree weta, hemideina crassidens (orthoptera: anostostomatidae). Hereditas 2000, 132, 49–54.
[46]  Morgan-Richards, M. Fission or fusion? mitochondrial dna phylogenetics of the chromosome races of hemideina crassidens (orthoptera: anostostomatidae). Cytogenet. Genome Res. 2002, 96, 217–222.
[47]  Apte, S.; Smith, P.J.; Wallis, G.P. Mitochondrial phylogeography of New Zealand freshwater crayfishes, paranephrops spp. Mol. Ecol. 2007, 16, 1897–1908.
[48]  Stevens, M.I.; Hogg, I.D. Population genetic structure of New Zealand's endemic corophiid amphipods: evidence for allopatric speciation. Biol. J. Linn. Soc. 2004, 81, 119–133.
[49]  Trewick, S.A.; Wallis, G.P. Bridging the “Beech-Gap”: New Zealand invertebrate phylogeography implicates pleistocene glaciation and pliocene isolation. Evolution 2001, 55, 2170–2180.
[50]  Cook, L.D.; Trewick, S.A.; Morgan-Richards, M.; Johns, P. Status of the New Zealand cave weta (rhaphidophoridae) genera pachyrhamma, gymnoplectron and turbottoplectron. Invertebr. Syst. 2010, 24, 131–138.
[51]  Marske, K.A.; Leschen, R.A.B.; Buckley, T.R. reconciling phylogeography and ecological niche models for new zealand beetles: looking beyond glacial refugia. Mol. Phylogenet. Evol. 2011, 59, 89–102.
[52]  Efford, M.; Howitt, R.; Gleeson, D. phylogenetic relationships of wainuia (mollusca: pulmonata)-biogeography and conservation implications. J. Roy. Soc. New Zeal. 2002, 32, 445–456.
[53]  Marshall, D.C.; Hill, K.B.R.; Fontaine, K.M.; Buckley, T.R.; Simon, C. Glacial refugia in a maritime temperate climate: cicada (kikihia subalpina) MtDNA phylogeography in New Zealand. Mol. Ecol. 2009, 18, 1995–2009.
[54]  Buckley, T.R.; James, S.; Allwood, J.; Bartlam, S.; Howitt, R.; Prada, D. Phylogenetic analysis of new zealand earthworms (oligochaeta: megascolecidae) reveals ancient clades and cryptic taxonomic diversity. Mol. Phylogenet. Evol. 2011, 58, 85–96.
[55]  Pratt, R.C.; Morgan-Richards, M.; Trewick, S.A. Diversification of New Zealand weta (orthoptera: ensifera: anostostomatidae) and their relationships in Australasia. Philos. T. Roy. Soc. B 2008, 363, 3427–3437.
[56]  Goldberg, J.; Trewick, S.A. Exploring Phylogeographic Congruence in a Continental Island System. Insects 2011. in press.
[57]  McGaughran, A.; Hogg, I.; Stevens, M.I.; Chadderton, W.L.; Winterbourn, M.J. Genetic divergence of three freshwater isopod species from southern New Zealand. J. Biogeogr. 2006, 33, 23–30.
[58]  Brown, B.; Emberson, R.M.; Paterson, A.M. Phylogeny of “oxycanus” lineages of hepialid moths from new zealand inferred from sequence variation in the mtDNA COI and II regions. Mol. Phylogenet. Evol. 1999, 13, 463–473.
[59]  Trewick, S.A. Identity of an endangered grasshopper (acrididae: brachaspis): taxonomy, molecules and conservation. Conserv. Genet. 2001, 2, 233–243.
[60]  Marshall, D.C.; Slon, K.; Cooley, J.R; Hill, K.B.R.; Simon, C. Steady plio-pleistocene diversification and a 2-million-year sympatry threshold in a New Zealand cicada. Mol. Phylogenet. Evol. 2008, 48, 1054–1066.
[61]  Morgan-Richards, M.; Trewick, S.A.; Wallis, G.P. Chromosome races with pliocene origins: evidence from MtDNA. Heredity 2001, 86, 303–312.
[62]  Morgan-Richards, M.; Trewick, S.A.; Stringer, I.A.N. Geographic parthenogenesis and the common tea-tree stick insect of New Zealand. Mol. Ecol. 2010, 19, 1227–1238.
[63]  Buckley, T.R.; Marske, K.; Attanayake, D. phylogeography and ecological niche modelling of the New Zealand stick insect clitarchus hookeri (white) support survival in multiple coastal refugia. J. Biogeogr. 2010, 37, 682–695.
[64]  Boyer, S.L.; Baker, J.M.; Giribet, G. Deep genetic divergences in aoraki denticulata (arachnida, opiliones, cyphophthalmi): A widespread ‘mite harvestman’ defies DNA taxonomy. Mol. Ecol. 2007, 16, 4999–5016.
[65]  Emerson, B.C.; Wallis, G.P. Phylogenetic relationships of the prodontria (coleoptera; scarabaeidae; subfamily melolonthinae), derived from sequence variation in the mitochondrial cytochrome oxidase II gene. Mol. Phylogenet. Evol. 1995, 4, 433–447.
[66]  Trewick, S.A.; Walker, K.J.; Jordan, C.J. Taxonomic and conservation status of a newly discovered giant landsnail from mount augustus, New Zealand. Conserv. Genet. 2008, 9, 1563–1575.
[67]  Trewick, S.A. Molecular diversity of dunedin peripatus (onychophora: peripatopsidae). New Zeal. J. Zool. 1999, 26, 381–393.
[68]  O'Neill, S.B.; Buckley, T.R.; Jewell, T.R.; Ritchie, P.A. Phylogeographic history of the New Zealand stick insect niveaphasma annulata (phasmatodea) estimated from mitochondrial and nuclear loci. Mol. Phylogenet. Evol. 2009, 53, 523–536.
[69]  Trewick, S.A.; Wallis, G.P.; Morgan-Richards, M. Phylogeographical pattern correlates with pliocene mountain building in the alpine scree weta (orthoptera, anostostomatidae). Mol. Ecol. 2000, 9, 657–666.
[70]  Pons, J.; Fujisawa, T; Claridge, E.M.; Savill, R.A.; Barraclough, T.G.; Vogler, A.P. Deep mtDNA subdivision within linnean species in an endemic radiation of tiger beetles from New Zealand (genus neocicindela). Mol. Phylogenet. Evol. 2011, 59, 251–262.
[71]  Vink, C.J.; Paterson, A.M. Combined molecular and morphological phylogenetic analyses of the New Zealand wolf spider genus anoteropsis (araneae: lycosidae). Mol. Phylogenet. Evol. 2003, 28, 576–587.
[72]  Arensburger, P.; Buckley, T.R.; Simon, C.; Moulds, M.; Holsinger, K.E. Biogeography and phylogeny of the New Zealand cicada genera (hemiptera: cicadidae) based on nuclear and mitochondrial DNA data. J. Biogeogr. 2004, 31, 557–569.
[73]  Arensburger, P.; Simon, C.; Holsinger, K. Evolution and phylogeny of the New Zealand cicada genus kikihia dugdale (homoptera: auchenorrhyncha: cicadidae) with special reference to the origin of the kermadec and norfolk islands' species. J. Biogeogr. 2004, 31, 1769–1783.
[74]  Buckley, T.R.; Young, E.C. A revision of the taxonomic status of sigara potamius and s. limnochares (hemiptera: corixidae), water boatmen of braided rivers in New Zealand. New Zeal. Entomol. 2008, 31, 47–57.
[75]  Trewick, S.A. DNA barcoding is not enough: mismatch of taxonomy and genealogy in New Zealand grasshoppers (orthoptera: acrididae). Cladistics 2008, 23, 1–15.
[76]  Chinn, W.G.; Gemmell, N.J. Adaptive radiation within New Zealand endemic species of the cockroach genus celatoblatta johns (blattidae): a response to plio-pleistocene mountain building and climate change. Mol. Ecol. 2004, 13, 1507–1518.
[77]  Trewick, S.A. Molecular evidence for dispersal rather than vicariance as the origin of flightless insect species on the Chatham Islands, New Zealand. J. Biogeogr. 2000, 27, 1189–1200.
[78]  Chambers, G.K.; Boon, W.-M.; Buckley, T.R.; Hitchmough, R.A. Using molecular methods to understand the gondwanan affinities of the New Zealand biota: three case studies. Aust. J. Bot. 2001, 49, 377–387.
[79]  Buckley, T.R.; Simon, C. Evolutionary radiation of the cicada genus maoricicada dugdale (hemiptera: cicadoidea) and the origins of the New Zealand alpine biota. Biol. J. Linn. Soc. 2007, 91, 419–435.
[80]  Trewick, S.A.; Morgan-Richards, M. After the deluge: mitochondrial DNA indicates miocene radiation and pliocene adaptation of tree and giant weta (orthoptera: anostostomatidae). J. Biogeogr. 2005, 32, 295–309.
[81]  Triggs, S.J.; Sherley, G.H. Allozyme genetic diversity in placostylus land snails and implications for conservation. New Zeal. J. Zool. 1993, 20, 19–33.
[82]  Buckley, T.R.; Stringer, I.; Gleeson, D.; Howitt, R.; Attanayake, D.; Parrish, R.; Sherley, G.; Rohan, M. A revision of the new zealand placostylus land snails using mitochondrial DNA and shell morphometric analyses, with implications for conservation. New Zeal. J. Zool. 2011, 38, 55–81.
[83]  Buckley, T.R.; Bradler, S. Tepakiphasma ngatikuri, a new genus and species of stick insect (phasmatodea) from the far north of New Zealand. New Zeal. Entomol. 2010, 33, 118–126.
[84]  Spencer, H.G.; Brook, F.J.; Kennedy, M. Phylogeography of kauri snails and their allies from northland, new zealand (mollusca: gastropoda: rhytididae: paryphantinae). Molec. Phylogenet. Evol. 2005, 38, 835–842.
[85]  Schnabel, K.E.; Hogg, I.D.; Chapman, M.A. Population genetic structures of two New Zealand corophiid amphipods and the presence of morphologically cryptic species: implications for the conservation of diversity. New Zeal. J. Mar. Fresh. Res. 2000, 34, 637–644.
[86]  Ponder, W.F.; Colgan, D.J.; Gleeson, D.M.; Sherley, G.H. Relationships of placostylus from lord howe island: an investigation using the mitochondrial cytochrome c oxidase 1 gene. Molluscan Res. 2003, 23, 159–178.
[87]  Trewick, S.A.; Morgan-Richards, M.; Collins, L.J. Are you my mother? phylogenetic analysis reveals orphan hybrid stick insect genus is part of a monophyletic New Zealand clade. Molecular Phylogenetics and Evolution 2008, 48, 799–808.
[88]  Nolan, L.; Hogg, I.D.; Sutherland, D.L.; Stevens, M.I.; Schnabel, K.E. allozyme and mitochondrial dna variability within the new zealand damselfly genera xanthocnemis, austrolestes, and ischnura (odonata). New Zeal. J. Zool. 2007, 34, 371–380.
[89]  Marshall, D.C.; Hill, K.B.R.; Cooley, J.R.; Simon, C. hybridization, mitochondrial dna phylogeography, and prediction of the early stages of reproductive isolation: Lessons from New Zealand cicadas (genus kikihia). Syst. Biol. 2011, doi:10.1093/sysbio/syr017.
[90]  King, T.M.; Kennedy, M.; Wallis, G.P. Phylogeographic genetic analysis of the alpine weta, hemideina maori: evolution of a colour polymorphism and origins of a hybrid zone. J. Roy. Soc. New Zeal. 2003, 33, 715–729.
[91]  Wratt, D.S.; Tait, A.; Griffiths, G.; Espie, P.; Jessen, M.; Keys, J.; Ladd, M.; Lew, D.; Lowther, W.; Mitchell, N.; Morton, J.; Reid, J.; Reid, S.; Richardson, A.; Sansom, J; Shankar, U. Climate for crops: integrating climate data with information about soils and crop requirements to reduce risks in agricultural decision-making. Meteorol. Appl. 2006, 13, 305–315.
[92]  Trewick, S.A.; Bland, K. Fire and slice: Palaeogeography for biogeography at New Zealand's North Island/South island juncture. J. Roy. Soc. New Zeal. 2011. in press. Available online: http://www.tandfonline.com/doi/abs/10.1080/03036758.2010.549493 (accessed on 16 June 2011).
[93]  Alloway, B.V.; Lowe, D.J.; Barrell, D.J.A.; Newnham, R.M.; Almond, P.C.; Augustinus, P.C.; Bertler, N.A.N.; Carter, L.; Litchfield, N.J.; McGlone, M.S.; Shulmeister, J.; Vandergoes, M.J.; Williams, P.W. Towards a climate event stratigraphy for New Zealand over the past 30000 years (nz-intimate project). J. Quaternary Sci. 2007, 22, 9–35.
[94]  The geology of New Zealand; Suggate, R.P., Stevens, G.R., Te Punga, M.T., Eds.; The Government Printer: Wellington, New Zealand, 1978.
[95]  Wardle, P. Evolution and distribution of the New Zealand flora, as affected by quaternary climates. New Zeal. J. Bot. 1963, 1, 3–17.
[96]  Wallis, G.P.; Trewick, S.A. Finding fault with vicariance: a critique of heads (1998). Syst Biol. 2001, 50, 602–609.
[97]  Hickerson, M.J.; Carstens, B.C.; Cavender-Bares, J.; Crandall, K.A.; Graham, C.H.; Johnson, J.B.; Rissler, L.; Victoriano, P.F; Yoder, A.D. phylogeography's past, present, and future: 10 years after avise, 2000. Mol. Phylogenet. Evol. 2010, 54, 291–301.
[98]  Templeton, A.R. Coalescent-based, maximum likelihood inference in phylogeography. Mol Ecol. 2010, 19, 431–446.
[99]  Darwin, C. On the Origin of Species by Means of Natural Selection; John Murray: London, UK, 1859.
[100]  Avise, J.C. Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 1992, 63, 62–76.
[101]  Schneider, C.J.; Cunningham, M.; Moritz, C. Comparative phylogeography and the history of endemic vertebrates in the wet tropics rainforests of Australia. Mol. Ecol. 1998, 7, 487–498.
[102]  Garrick, G.; Sunnucks, P.; Dyer, R.J. Nuclear gene phylogeography using phase: Dealing with unresolved genotypes, lost alleles, and systematic bias in parameter estimation. BMC Evol. Biol. 2010, 10, 118.
[103]  Morgan-Richards, M.; Trewick, S.A. Hybrid origin of a parthenogenetic genus? Mol. Ecol. 2005, 14, 2133–2142.
[104]  Edgecombe, G.D.; Giribet, G. A New Zealand species of the trans-tasman centipede order craterostigmomorpha (arthropoda: chilopoda) corroborated by molecular evidence. Invertebr. Syst. 2008, 22, 1–15.
[105]  McCulloch, G.A.; Wallis, G.P.; Waters, J.M. Do Insects lose flight before they lose their wings? population genetic structure in subalpine stoneflies. Mol. Ecol. 2009, 18, 4073–4087.
[106]  Cranston, P.S.; Hardy, N.B.; Morse, G.E.; Puslednik, L.; McCluen, S.R. When molecules and morphology concur: the ‘gondwanan’ midges (diptera: chironomidae). Syst. Entomol. 2010, 35, 636–648.
[107]  Hogg, I.D.; Stevens, M.I.; Schnabel, K.E.; Chapman, M.A. Deeply divergent lineages of the widespread New Zealand amphipod paracalliope fluviatilis revealed using allozyme and mitochondrial DNA analysis. Freshwater Biol. 2006, 51, 236–248.
[108]  Trewick, S.A. Sympatric cryptic species in new zealand onychophora. Biol. J. Linn. Soc. 1998, 63, 307–329.
[109]  Morgan-Richards, M. Intraspecific karyotype variation is not concordant with allozyme variation in the auckland tree weta of New Zealand, hemideina thoracica (orthoptera: stenopelmatidae). Biol. J. Linn. Soc. 1997, 60, 423–442.
[110]  Slatkin, M. Gene flow and the geographic structure of nnatural populations. Science 1987, 236, 787–792.
[111]  Excoffier, L.; Foll, M; Petit, R.J. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 481–501.
[112]  Geneious v5.3. Available online: http://www.geneious.com/ (accessed on 20 June 2011).
[113]  Buckley, T.R.; Attanayake, D.; Park, D.; Ravindran, S.; Jewell, T.R.; Normark, B.B. Investigating hybridization in the parthenogenetic New Zealand stick insect acanthoxyla (phasmatodea) using single-copy nuclear loci. Mol. Phylogenet. Evol. 2008, 48, 335–349.
[114]  Trewick, S.A.; Morris, S. Diversity and Taxonomic Status of Some New Zealand Grasshoppers; Department of Conservation, Research & Development Series #290: Wellington, NZ, 2008.
[115]  Morgan-Richards, M.; Gibbs, G. W. Colour, Allozyme karyotype variation show little concordance in the New zealand giant scree weta deinacrida connectens (orthoptera: stenopelmatidae). Hereditas 1996, 125, 303–312.
[116]  Trewick, S.A. Scree weta phylogeography: surviving glaciation and implications for pleistocene biogeography in New Zealand. N. Z. J. Zool. 2001, 28, 291–298.
[117]  Smith, B.L.T. The Distribution, Phylogeography and Morphology of the New Zealand Ground Weta, Hemiandrus maculifrons. Unpublished BSc Honours Thesis, Massey University, Palmerston North, New Zealand, 2011.
[118]  Chappell, E.; Trewick, SA.; Morgan-Richards. Shape and Sound Reveal Genetic Cohesion not Speciation in the New Zealand orthopteran, Hemiandrus pallitarsis, Despite High mtDNA Divergence. Biological Journal of the Linnean Society 2011. in press.
[119]  Rogers, G.M. The nature of the lower north island floristic Gap. N. Z. J. Bot. 1989, 27, 221–242.
[120]  Lewis, K.B.; Carter, L.; Davey, F.J. The opening of cook strait: interglacial tidal scour and aligning basins at a subduction to transform plate edge. Mar. Geol. 1994, 16, 293–312.
[121]  Fleming, C.A. The Geological History of New Zealand and its Life; Auckland University Press: Auckland, New Zealand, 1979.
[122]  Harrison, R.G. Dispersal polymorphisms in insects. Annu. Rev. Ecol. Syst. 1980, 11, 95–118.
[123]  Edwards, S.V. Is a new and general theory of molecular systematics emerging? Evolution 2009, 63, 1–19.
[124]  Edwards, S.V.; Liu, L.; Pearl, D.K. High-resolution species trees without concatenation. Proc. Natl. Acad. Sci. USA 2007, 104, 5936–5941.
[125]  Liu, L.; Edwards, S.V. Phylogenetic analysis in the anomaly zone. Syst. Biol. 2009, 58, 452–460.
[126]  Crosby, T. Fauna of New Zealand. Available online: http://www.landcareresearch.co.nz/research/biosystematics/invertebrates/faunaofnz/ (accessed on 15 June 2011).

Full-Text

comments powered by Disqus