全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Forests  2012 

Index for Characterizing Post-Fire Soil Environments in Temperate Coniferous Forests

DOI: 10.3390/f3030445

Keywords: fire effects, fire severity, soil burn severity, post-fire soil productivity, post-fire microbes, post-fire niche

Full-Text   Cite this paper   Add to My Lib

Abstract:

Many scientists and managers have an interest in describing the environment following a fire to understand the effects on soil productivity, vegetation growth, and wildlife habitat, but little research has focused on the scientific rationale for classifying the post-fire environment. We developed an empirically-grounded soil post-fire index (PFI) based on available science and ecological thresholds. Using over 50 literature sources, we identified a minimum of five broad categories of post-fire outcomes: (a) unburned, (b) abundant surface organic matter ( > 85% surface organic matter), (c) moderate amount of surface organic matter ( ≥ 40 through 85%), (d) small amounts of surface organic matter ( < 40%), and (e) absence of surface organic matter (no organic matter left). We then subdivided each broad category on the basis of post-fire mineral soil colors providing a more fine-tuned post-fire soil index. We related each PFI category to characteristics such as soil temperature and duration of heating during fire, and physical, chemical, and biological responses. Classifying or describing post-fire soil conditions consistently will improve interpretations of fire effects research and facilitate communication of potential responses or outcomes (e.g., erosion potential) from fires of varying severities.

References

[1]  Millennium Ecosystem Assessment. Synthesis; Island Press: Washington, DC, USA, 2005.
[2]  Jain, T.B.; Graham, R.T.; Pilliod, D.S. Tongue-tied. Wildfire 2004, July/August, 2–6.
[3]  Wells, C.G.; Campbell, R.E.; DeBano, L.F.; Lewis, C.E.; Fredriksen, R.L.; Franklin, E.C.; Froelich, R.C.; Dunn, P.H. Effects of Fire on Soil: A State-of-Knowledge Review; General Technical Report WO-7; USDA Forest Service: Washington, DC, USA, 1979.
[4]  Hungerford, R.D.; Harrington, M.G.; Frandsen, W.H.; Ryan, K.C.; Niehoff, G.J. Influence of Fire on Factors That Affect Site Productivity. In Proceedings—Management and Productivity of Western-montane Forest Soils; Harvey, A.E., Neuenschwander, L.F., Comps.; General Technical Report INT-GTR-280; USDA Forest Service, Intermountain Research Station: Ogden, UT, USA, 1991; pp. 32–50.
[5]  DeBano, L.F.; Neary, D.G.; Ffolliott, P.F. Fire: Its Effect on Soil and Other Ecosystem Resources; John Wiley & Sons, Inc.: New York, NY, USA, 1998.
[6]  Wondafrash, T.T.; Sancho, I.M.; Miguel, V.G.; Serrano, R.E. Relationship between soil color and temperature in the surface horizon of Mediterranean soils: A laboratory study. Soil Sci. 2005, 170, 495–503.
[7]  Ryan, K.C.; Noste, N.V. Evaluating Prescribed Fires. In Proceedings—Symposium and Workshop on Wilderness Fire; General Technical Report INT-182;; Lotan, J.E., Kilgore, B.M., Fischer, W.C., Mutch, R.W., Eds.; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1985; pp. 230–238.
[8]  Key, C.H.; Benson, N.C. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index; and Remote Sensing of Severity, the Normalized Burn Ratio. In FIREMON: Fire Effects Monitoring and Inventory System; General Technical Report RMRS-GTR-164-CD; Lutes, D.C., Keane, K.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006.
[9]  Parsons, A.; Robichaud, P.R.; Lewis, S.A.; Napper, C.; Clark, J.T. Field Guide for Mapping Post-Fire Soil Burn Severity; General Technical Report RMRS-GTR-243; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010.
[10]  Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126, doi:10.1071/WF07049.
[11]  Jain, T.B.; Graham, R.T. The Relation between Tree Burn Severity and Forest Structure in the Rocky Mountains. In Proceedings of the 2005 National Silviculture Workshop on Restoring Fire-Adapted Ecosystems, Tahoe City, CA, USA, 6-10 June 2005; Powers, R.F., Ed.; USDA Forest Service, Pacific Southwest Research Station: Albany, CA, USA; pp. 213–250. General Technical Report PSW-GTR-203.
[12]  Jain, T.B.; Gould, W.; Graham, R.T.; Pilliod, D.S.; Lentile, L.B.; Gonzalez, G. A soil burn severity index for understanding soil-fire relations in tropical forests. Ambio 2008, 37, 563–568, doi:10.1579/0044-7447-37.7.563.
[13]  Fraver, S.; Jain, T.B.; Bradford, J.B.; D’Amato, A.W.; Kastendick, D.; Palik, B.; Shinneman, D.; Stanovick, J. The efficacy of salvage logging in reducing subsequent fire severity in conifer-dominated forests of Minnesota, USA. Ecol. Appl. 2011, 21, 1895–1901, doi:10.1890/11-0380.1.
[14]  Keeley, J.E.; Fotheringham, C.J.; Baer-Keeley, M. Factors affecting plant diversity during post-fire recovery and succession of mediterranean-climate shrublands in California, USA. Divers. Distrib. 2005, 11, 525–537, doi:10.1111/j.1366-9516.2005.00200.x.
[15]  Langlands, P.R.; Brennan, K.E.C.; Framenau, V.W.; Main, B.Y. Predicting the post-fire responses of animal assemblages: Testing a trait-based approach using spiders. J. Anim. Ecol. 2011, 80, 558–568, doi:10.1111/j.1365-2656.2010.01795.x.
[16]  Santana, V.M.; Baeza, M.J.; Maestre, F.T. Seedling establishment along post-fire succession in Mediterranean shrublands dominated by obligate seeders. Acta Oecol. 2012, 39, 51–60, doi:10.1016/j.actao.2011.12.001.
[17]  Smith, J.K.; Fischer, W.C. Fire Ecology of the Forest Habitat Types of Northern Idaho; General Technical Report INT-GTR-363; USDA Forest Service,Intermountain Research Station: Ogden, UT, USA, 1997.
[18]  Helms, J.A. The Dictionary of Forestry; Society of American Foresters: Bethesda, MD, USA, 1998.
[19]  Graham, R.T.; Harvey, A.E.; Jain, T.B.; Tonn, J.R. The Effects of Thinning and Similar Stand Treatments on Fire Behavior in Western Forests; General Technical Report PNW-GTR-463; USDA Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1999.
[20]  Reynolds, R.T.; Graham, R.T.; Reiser, M.H.; Bassett, R.L.; Kennedy, P.L.; Boyce, D.A.; Goodwin, G., Jr.; Smith, R.; Fisher, E.L. Management Recommendations for the Northern Goshawk in the Southwestern United States; General Technical Report RM-217; USDA Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1992.
[21]  Pilliod, D.S.; Bull, E.L.; Hayes, J.L.; Wales, B.C. Wildlife and Invertebrate Response to Fuel Reduction Treatments in Dry Coniferous Forests of the Western United States: A Synthesis; General Technical Report RMRS-GTR-173; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006.
[22]  Jurgensen, M.F.; Harvey, A.E.; Graham, R.T.; Page-Dumroese, D.S.; Tonn, J.R.; Larsen, M.J.; Jain, T.B. Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of inland northwest fores. For. Sci. 1997, 43, 234–251.
[23]  23. Page-Dumroese, D.; Jurgensen, M.; Elliot, W.; Rice, T.; Nesser, J.; Collins, T.; Meurisse, R. Soil quality standards and guidelines for forest sustainability in northwestern North America. For. Ecol. Manag. 2000, 138, 445–462, doi:10.1016/S0378-1127(00)00430-8.
[24]  Schoenholtz, S.H.; van Miegroet, H.; Burger, J.A. A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities. For. Ecol. Manag. 2000, 138, 335–356, doi:10.1016/S0378-1127(00)00423-0.
[25]  Canadell, J.G.; Raupach, M.R. Managing forests for climate change mitigation. Science 2008, 320, 1456–1457, doi:10.1126/science.1155458.
[26]  Pullin, A.S.; Stewart, G.B. Guidelines for systematic review in conservation and management. Conserv. Biol. 2006, 20, 1647–1656, doi:10.1111/j.1523-1739.2006.00485.x.
[27]  SAS, version 9.2; software, SAS Institute Inc. Cary, NC, USA, 27513, 2002-2008.
[28]  Graham, R.T.; Jain, T.B.; Loseke, M. Fuel Treatments, Fire Suppression, and Their Interaction with Wildfire and Its Impacts: The Warm Lake Experience During the Cascade Complex of Wildfires in Central Idaho, 2007; General Technical Report RMRS-GTR-229; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2009.
[29]  Jain, T.B.; Juillerat, M.; Sandquist, J.; Ford, M.; Sauer, B.; Mitchell, R.; McAvoy, S.; Hanley, J.; David, J. Photograph Handbook for Comparing Burned and Unburned Sites Within a Dry Forested and Grassland Mosaic: A Tool for Communication, Calibration, and Monitoring Post-Fire Effects; General Technical Report RMRS-GTR-197; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2007.
[30]  Baird, M.; Zabowski, D.; Everett, R.L. Wildfire effects on carbon and nitrogen in inland coniferous forests. Plant Soil 1999, 209, 233–243, doi:10.1023/A:1004602408717.
[31]  Dress, W.J.; Boerner, R.E.J. Temporal and spatial patterns in root nitrogen concentration and root decomposition in relation to prescribed fire. Am. Midl. Nat. 2003, 149, 245–257, doi:10.1674/0003-0031(2003)149[0245:TASPIR]2.0.CO;2.
[32]  Dyrness, C.T.; Norum, R.A. The effects of experimental fires on black spruce forest floors in interior Alaska. Can. J. For. Res. 1983, 13, 879–893, doi:10.1139/x83-118.
[33]  Morgan, P.; Neuenschwander, L.F. Seed-bank contributions to regeneration of shrub species after clear-cutting and burning. Can. J. Bot. 1988, 66, 169–172, doi:10.1139/b88-026.
[34]  Brais, S.; Pare, D.; Ouimet, R. Impacts of wild fire severity and salvage harvesting on the nutrient balance of jack pine and black spruce boreal stands. For. Ecol. Manag. 2000, 137, 231–243, doi:10.1016/S0378-1127(99)00331-X.
[35]  White, J.D.; Ryan, K.C.; Key, C.C.; Running, S.W. Remote sensing of forest fire severity and vegetation recovery. Int. J. Wildland Fire 1996, 6, 125–136, doi:10.1071/WF9960125.
[36]  Wang, G.G.; Kemball, K.J. Effects of fire severity on early development of understory vegetation. Can. J. For. Res. 2005, 35, 254–262, doi:10.1139/x04-177.
[37]  Alexander, J.D.; Seavy, N.E.; Ralph, J.C.; Hogoboom, B. Vegetation and topographical correlates of fire severity from two fires in the Klamath-Siskiyou region of Oregon and California. Int. J. Wildland Fire 2006, 15, 237–245, doi:10.1071/WF05053.
[38]  Patterson, M.W.; Yool, S.R. Mapping fire-induced vegetation mortality using Landsat Thematic Mapper data: A comparison of linear transformation techniques. Remote Sens. Environ. 1998, 65, 132–142, doi:10.1016/S0034-4257(98)00018-2.
[39]  USDI. Fire Monitoring Handbook; Fire Management Program Center, National Interagency Fire Center: Boise, ID, USA, 2003.
[40]  Murphy, J.D.; Johnson, D.W.; Miller, W.W.; Walker, R.F.; Blank, R.R. Prescribed fire effects on forest floor and soil nutrients in a Sierra Nevada Forest. Soil Sci. 2006, 171, 181–199.
[41]  Harvey, A.E.; Jurgensen, M.F.; Larsen, M.J.; Graham, R.T. Relationships among soil microsite, ectomycorrhizae, and natural conifer regeneration of old-growth forests in western Montana. Can. J. For. Res. 1987, 17, 58–62, doi:10.1139/x87-011.
[42]  Kasischke, E.S.; Johnstone, J.F. Variation in postfire organic layer thickness in a black spruce forest complex in interior Alaska and its effects on soil temperature and moisture. Can. J. For. Res. 2005, 35, 2164–2177, doi:10.1139/x05-159.
[43]  Neary, D.G.; Ryan, K.C.; DeBano, L.F. Wildland Fire in Ecosystems: Effects of Fire on Soils and Water; General Technical Report RMRS-GTR-42; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2005; Volume 4.
[44]  Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manag. 1999, 122, 51–71, doi:10.1016/S0378-1127(99)00032-8.
[45]  Bentley, J.R.; Fenner, R.L. Soil temperatures during burning related to postfire seedbeds on woodland range. J. For. 1958, 56, 737–740.
[46]  White, E.M.; Thompson, W.W.; Gartner, F.R. Heat effects on nutrient release from soils under ponderosa pine. J. Range Manag. 1973, 26, 22–24, doi:10.2307/3896875.
[47]  Ketterings, Q.M.; Bigham, J.M. Soil color as an indicator of slash-and-burn fire severity and soil fertility in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 2000, 64, 1826–1833, doi:10.2136/sssaj2000.6451826x.
[48]  Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10, doi:10.1007/s00442-004-1788-8.
[49]  Robichaud, P.R. Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA. J. Hydrol. 2000, 231-232, 220–229, doi:10.1016/S0022-1694(00)00196-7.
[50]  Lewis, S.A.; Wu, J.Q.; Robichaud, P.R. Assessing burn severity and comparing soil water repellency, Hayman Fire, Colorado. Hydrol. Process. 2006, 20, 1–16, doi:10.1002/hyp.5880.
[51]  Johansen, M.P.; Hakonson, T.E.; Breshears, D.D. Post-fire runoff and erosion from rainfall simulation: Contrasting forests with shrublands and grasslands. Hydrol. Process. 2001, 15, 2953–2965, doi:10.1002/hyp.384.
[52]  Pannkuk, C.D.; Robichaud, P.R. Effectiveness of needle cast at reducing erosion after forest fires. Water Resour. Res. 2003, 39, 1333–1344, doi:10.1029/2003WR002318.
[53]  Meeuwig, R.O. Infiltration and Soil Erosion on Coolwater Ridge, Idaho; Research Note INT-RN-103; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1969.
[54]  Benavides-Solorio, J.; MacDonald, L.H. Post-fire runoff and erosion from simulated rainfall on small plots, Colorado Front Range. Hydrol. Process. 2001, 15, 2931–2952, doi:10.1002/hyp.383.
[55]  Miller, M. Fire Behavior and Characteristics. In Fire Effects Guide; Miller, M., Ed.; National Interagency Fire Center: Boise, ID, USA, 2001; pp. 12–38.
[56]  Neff, J.C.; Harden, J.W.; Gleixner, G. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Can. J. For. Res. 2005, 35, 2178–2187, doi:10.1139/x05-154.
[57]  Shakesby, R.A.; Chafer, C.J.; Doerr, S.H.; Blake, W.H.; Wallbrink, P.; Humphreys, G.S.; Harrington, B.A. Fire severity, water repellency characteristics and hydrogeomorphological changes following the Christmas 2001 Sydney forest fires. Aust. Geogr. 2003, 34, 147–175, doi:10.1080/00049180301736.
[58]  Ulery, A.L.; Graham, R.C. Forest fire effects on soil color and texture. Soil Sci. Soc. Am. J. 1993, 57, 135–140.
[59]  Arocena, J.M.; Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 2003, 113, 1–16, doi:10.1016/S0016-7061(02)00312-9.
[60]  Cerri, C.C.; Volkoff, B.; Andreaux, F. Nature and behaviour of organic matter in soils under natural forest, and after deforestation, burning, and cultivation, near Manaus. For. Ecol. Manag. 1991, 38, 247–257, doi:10.1016/0378-1127(91)90146-M.
[61]  Ellingson, L.J.; Kauffman, J.B.; Cummings, D.L.; Sanford, R.L., Jr.; Jaramillo, V.J. Soil N dynamics associated with deforestation, biomass burning, and pasture conversion in a Mexican tropical dry forest. For. Ecol. Manag. 2000, 137, 41–51, doi:10.1016/S0378-1127(99)00311-4.
[62]  Carballas, M.; Carballas, T. Inorganic and organic N pools in soils burned or heated: Immediate alterations and evolution after forest wildfires. Geoderma 2004, 121, 291–306, doi:10.1016/j.geoderma.2003.11.016.
[63]  Rumpel, C.; González-Pérez, J.A.; Bardoux, G.; Largeau, C.; Gonzalez-Vila, F.J.; Valentin, C. Composition and reactivity of morphologically distinct charred materials left after slash-and-burn practices in agricultural tropical soils. Org. Geochem. 2007, 38, 911–920, doi:10.1016/j.orggeochem.2006.12.014.
[64]  Yeager, C.M.; Northup, D.E.; Grow, C.C.; Barns, S.M.; Kuske, C.R. Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire. Appl. Environ. Microb. 2005, 71, 2713–2722.
[65]  Bellgard, S.E.; Whelan, R.J.; Muston, R.M. The impact of wildfire on vesicular-arbuscular Mycorrhizal fungi and their potential to influence the re-establishment of post-fire plant communities. Mycorrhiza 1994, 4, 139–146, doi:10.1007/BF00203532.
[66]  Horton, T.R.; Cázares, E.; Bruns, T.D. EctoMycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 1998, 8, 11–18, doi:10.1007/s005720050205.
[67]  Bernhardt, E.L.; Hollingsworth, T.N.; Chapin, I.F.S. Fire severity mediates climate-driven shifts in understory community composition of black spruce stands of interior Alaska. J. Veg. Sci. 2011, 22, 32–44, doi:10.1111/j.1654-1103.2010.01231.x.
[68]  Blank, R.R.; Allen, F.; Young, J.A. Extractable anions in soils following wildfire in a sagebrush-grass community. Soil Sci. Soc. Am. J. 1994, 58, 564–570.
[69]  Tyler, C.M. Factors contributing to postfire seedling establishment in chaparral: Direct and indirect effects of fire. J. Ecol. 1995, 83, 1009–1020, doi:10.2307/2261182.
[70]  Bonnet, V.H.; Schoettle, A.W.; Shepperd, W.D. Postfire environmental conditions influence the spatial pattern of regeneration for Pinus ponderosa. Can. J. For. Res. 2005, 35, 37–47, doi:10.1139/x04-157.
[71]  Choromanska, U.; DeLuca, T.H. Microbial activity and nitrogen mineralization in forest mineral soils following heating: Evaluation of post-fire effects. Soil Biol. Biochem. 2002, 34, 263–271, doi:10.1016/S0038-0717(01)00180-8.
[72]  Cromack, K., Jr.; Landsberg, J.D.; Everett, R.L.; Zeleny, R.; Giardina, C.P.; Strand, E.K.; Anderson, T.D.; Averill, R.; Smyrski, R. Assessing the impacts of severe fire on forest ecosystem recovery. J. Sustain. For. 2000, 11, 177–228, doi:10.1300/J091v11n01_08.
[73]  Jain, T.B.; Graham, R.T.; Pilliod, D.S. The Relation between Forest Structure and Soil Burn Severity. In Fuels Management—How to Measure Success: Conference Proceedings RMRS-P-41, 28–30 March 2006; Portland, OR, USA; Andrews, P.L., Butler, B.W., Comps.; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 615–631.
[74]  Larrivée, M.; Fahrig, L.; Drapeau, P. Effects of a recent wildfire and clearcuts on ground-dwelling boreal forest spider assemblages. Can. J. For. Res. 2005, 35, 2575–2588, doi:10.1139/x05-169.
[75]  Lentile, L.B.; Smith, F.W.; Shepperd, W.D. Patch structure, fire-scar formation, and tree regeneration in a large mixed-severity fire in the South Dakota Black Hills, USA. Can. J. For. Res. 2005, 35, 2875–2885, doi:10.1139/x05-205.
[76]  Schimmel, J.; Granstrom, A. Fire severity and vegetation response in the boreal Swedish forest. Ecology 1996, 77, 1436–1450, doi:10.2307/2265541.
[77]  Lutes, D.C.; Keane, R.E.; Caratti, J.F.; Key, C.H.; Benson, N.C.; Sutherland, S.; Gangi, L.J. FIREMON: Fire Effects Monitoring and Inventory System; General Technical Report RMRS-GTR-164-CD; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006.
[78]  Barkley, Y.C. After the Burn: Assessing and Managing your Forestland After a Wildfire; Idaho Forest, Wildlife and Range Experiment Station Bulletin No. 76; University of Idaho Extension: Moscow, ID, USA, 2006.
[79]  Chafer, C.J.; Noonan, M.; Macnaught, E. The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires. Int. J. Wildland Fire 2004, 13, 227–240, doi:10.1071/WF03041.
[80]  Fischer, W.C.; Clayton, B.D. Fire Ecology of Montana Forest Habitat Types East of the Continental Divide; General Technical Report INT-141; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1983.
[81]  Eyre, F.H. Forest Cover Types of the United States and Canada; Society of American Foresters: Washington, DC, USA, 1980.
[82]  Haig, I.T.; Davis, K.P.; Weidman, R.H. Natural Regeneration in the Western White Pine Type; Technical Bulletin 767; U.S. Department of Agriculture: Washington, DC, USA, 1941.
[83]  Cochran, P.H. Thermal Properties and Surface Temperatures of Seedbeds: A Guide for Foresters; USDA Forest Service, Pacific Northwest Forest and Range Experiment Station: Portland, OR, USA, 1969.
[84]  Wright, H.A.; Bailey, A.W. Fire Ecology: United States and Southern Canada; John Wiley & Sons: New York, NY, USA, 1982.
[85]  Agee, J.K. Fire Ecology of Pacific Northwest Forests; Island Press: Washington, DC, USA, 1993.
[86]  Robichaud, P.R.; Graham, R.T.; Hungerford, R.D. Onsite Sediment Production and Nutrient Losses from a Low-severity Burn in the Interior Northwest. In Interior Cedar-Hemlock-White Pine Forests: Ecology and Management: Symposium Proceedings; Baumgartner, D.M., Lotan, J.E., Tonn, J.R., Eds.; Washington State University: Pullman, WA, USA, 1994; pp. 227–232.
[87]  Boyer, D.E.; Dell, J.D. Fire Effects on Pacific Northwestern Soils; USDA Forest Service, Pacific Northwest Region, Watershed Management and Aviation and Fire Management: Portland, OR, USA, 1980.
[88]  Ketterings, Q.M.; Bigham, J.M.; Laperche, V. Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Sci. Soc. Am.J. 2000, 64, 1108–1117, doi:10.2136/sssaj2000.6431108x.
[89]  DeBano, L.F.; Rice, R.M.; Conrad, C.E. Soil Heating in Chaparral Fires: Effects on Soil Properties, Plant Nutrients, Erosion, and Runoff; Research Paper PSW-145; USDA Forest Service, Pacific Southwest Forest and Range Experiment Station: Berkeley, CA, USA, 1979.
[90]  Giovannini, G.; Lucchesi, S. Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. Soil Sci. 1997, 162, 479–486, doi:10.1097/00010694-199707000-00003.
[91]  Ulery, A.L.; Graham, R.C.; Bowen, L.H. Forest fire effects on soil phyllosilicates in California. Soil Sci. Soc. Am.J. 1996, 60, 309–315.
[92]  Hood, S.M. Mitigating Old Tree Mortality in Long-unburned, Fire-Dependent Forests: A Synthesis; General Technical Report RMRS-GTR-238; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010.
[93]  Guerrero, C.; Mataix-Solera, J.; Gómez, I.; García-Orenes, F.; Jordán, M.M. Microbial recolonization and chemical changes in a soil heated at different temperatures. Int. J. Wildland Fire 2005, 14, 385–400, doi:10.1071/WF05039.
[94]  Levitt, J. Responses of Plants to Environmental Stress. Vol. 1, Chilling, Freezing, and High Temperature Stresses; Academic Press: New York, NY, USA, 1980.
[95]  Howard, W.E.; Fenner, R.L.; Childs, H.E., Jr. Wildlife survival in brush burns. J. Range Manag 1959, 12, 230–234, doi:10.2307/3894992.
[96]  Lyon, L.J.; Telfer, E.S.; Schreiner, D.S. Direct Effects of Fire and Animal Responses. In Wildland Fire in Ecosystems: Effects of Fire on Fauna; Smith, J.K., Ed.; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2000; pp. 17–24. General Technical Report RMRS-GTR-42-Volume 1.
[97]  Christiansen, K. Bionomics of collembola. Annu. Rev. Entomol. 1964, 9, 147–178, doi:10.1146/annurev.en.09.010164.001051.
[98]  K?hl, M.; Magnussen, S.S.; Marchetti, M. Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory; Springer: Berlin, Germany, 2006.
[99]  Schreuder, H.T.; Gregoire, T.G.; Wood, G.B. Sampling Methods for Multiresource Forest Inventory; John Wiley & Sons, Inc: New York, NY, USA, 1993.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133