The TSPY gene stands out from all other human protein-coding genes because of its high copy number and tandemly-repeated organization. Here, we review its evolutionary history in great apes in order to assess whether these unusual properties are more likely to result from a relaxation of constraint or an unusual functional role. Detailed comparisons with chimpanzee are possible because a finished sequence of the chimpanzee Y chromosome is available, together with more limited data from other apes. These comparisons suggest that the human-chimpanzee ancestral Y chromosome carried a tandem array of TSPY genes which expanded on the human lineage while undergoing multiple duplication events followed by pseudogene formation on the chimpanzee lineage. The protein coding region is the most highly conserved of the multi-copy Y genes in human-chimpanzee comparisons, and the analysis of the d N/d S ratio indicates that TSPY is evolutionarily highly constrained, but may have experienced positive selection after the human-chimpanzee split. We therefore conclude that the exceptionally high copy number in humans is most likely due to a human-specific but unknown functional role, possibly involving rapid production of a large amount of TSPY protein at some stage during?spermatogenesis.
References
[1]
International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature?2004, 431, 931–945.
[2]
The 1000 Genomes Consortium. A map of human genome variation from population-scale sequencing. Nature?2010, 467, 1061–1073.
[3]
Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature?2005, 437, 69–87.
[4]
Gibbs, R.A.; Rogers, J.; Katze, M.G.; Bumgarner, R.; Weinstock, G.M.; Mardis, E.R.; Remington, K.A.; Strausberg, R.L.; Venter, J.C.; Wilson, R.K.; et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science?2007, 316, 222–234.
[5]
Tyler-Smith, C.; Taylor, L.; Müller, U. Structure of a hypervariable tandemly repeated DNA sequence on the short arm of the human Y chromosome. J. Mol. Biol.?1988, 203, 837–848.
[6]
Warburton, P.E.; Hasson, D.; Guillem, F.; Lescale, C.; Jin, X.; Abrusan, G. Analysis of the largest tandemly repeated DNA families in the human genome. BMC Genomics?2008, 9, 533.
[7]
Arnemann, J.; Epplen, J.T.; Cooke, H.J.; Sauermann, U.; Engel, W.; Schmidtke, J. A human Y-chromosomal DNA sequence expressed in testicular tissue. Nucleic Acids Res.?1987, 15, 8713–8724.
[8]
Dechend, F.; Williams, G.; Skawran, B.; Schubert, S.; Krawczak, M.; Tyler-Smith, C.; Schmidtke, J. TSPY variants in six loci on the human Y chromosome. Cytogenet. Cell Genet.?2000, 91, 67–71.
[9]
Skaletsky, H.; Kuroda-Kawaguchi, T.; Minx, P.J.; Cordum, H.S.; Hillier, L.; Brown, L.G.; Repping, S.; Pyntikova, T.; Ali, J.; Bieri, T.; et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature?2003, 423, 825–837.
[10]
Oakey, R.; Tyler-Smith, C. Y chromosome DNA haplotyping suggests that most European and Asian men are descended from one of two males. Genomics?1990, 7, 325–330.
[11]
Mathias, N.; Bayes, M.; Tyler-Smith, C. Highly informative compound haplotypes for the human Y chromosome. Hum. Mol. Genet.?1994, 3, 115–123.
[12]
Repping, S.; van Daalen, S.K.; Brown, L.G.; Korver, C.M.; Lange, J.; Marszalek, J.D.; Pyntikova, T.; van der Veen, F.; Skaletsky, H.; Page, D.C.; et al. High mutation rates have driven extensive structural polymorphism among human Y chromosomes. Nat. Genet.?2006, 38, 463–467.
[13]
Murphy, K.M.; Cohen, J.S.; Goodrich, A.; Long, P.P.; Griffin, C.A. Constitutional duplication of a region of chromosome Yp encoding AMELY, PRKY, and TBL1Y: implications for sex chromosome analysis and bone marrow engraftment analysis. J. Mol. Diagn.?2007, 9, 408–413.
[14]
Santos, F.R.; Pandya, A.; Tyler-Smith, C. Reliability of DNA-based sex tests. Nat. Genet.?1998, 18, 103.
[15]
Jobling, M.A.; Lo, I.C.; Turner, D.J.; Bowden, G.R.; Lee, A.C.; Xue, Y.; Carvalho-Silva, D.; Hurles, M.E.; Adams, S.M.; Chang, Y.M.; et al. Structural variation on the short arm of the human Y chromosome: recurrent multigene deletions encompassing Amelogenin Y. Hum. Mol. Genet.?2007, 16, 307–316.
[16]
Schempp, W.; Binkele, A.; Arnemann, J.; Glaser, B.; Ma, K.; Taylor, K.; Toder, R.; Wolfe, J.; Zeitler, S.; Chandley, A.C. Comparative mapping of YRRM- and TSPY-related cosmids in man and hominoid apes. Chromosome Res.?1995, 3, 227–234.
[17]
Zhang, J.S.; Yang-Feng, T.L.; Muller, U.; Mohandas, T.K.; de Jong, P.J.; Lau, Y.F. Molecular isolation and characterization of an expressed gene from the human Y chromosome. Hum. Mol. Genet.?1992, 1, 717–726.
[18]
Hughes, J.F.; Skaletsky, H.; Pyntikova, T.; Graves, T.A.; van Daalen, S.K.; Minx, P.J.; Fulton, R.S.; McGrath, S.D.; Locke, D.P.; Friedman, C.; et al. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature?2010, 463, 536–539.
[19]
Fortna, A.; Kim, Y.; MacLaren, E.; Marshall, K.; Hahn, G.; Meltesen, L.; Brenton, M.; Hink, R.; Burgers, S.; Hernandez-Boussard, T. Lineage-specific gene duplication and loss in human and great ape evolution. PLoS Biol.?2004, 2, E207.
[20]
Tyler-Smith, C. An evolutionary perspective on Y-chromosomal variation and male infertility. Int. J. Androl.?2008, 31, 376–382.
[21]
Schnieders, F.; D?rk, T.; Arnemann, J.; Vogel, T.; Werner, M.; Schmidtke, J. Testis-specific protein, Y-encoded (TSPY) expression in testicular tissues. Hum. Mol. Genet.?1996, 5, 1801–1807.
[22]
Giachini, C.; Nuti, F.; Turner, D.J.; Laface, I.; Xue, Y.; Daguin, F.; Forti, G.; Tyler-Smith, C.; Krausz, C. TSPY1 copy number variation influences spermatogenesis and shows differences among Y lineages. J. Clin. Endocrinol. Metab.?2009, 94, 4016–4022.
[23]
Nickkholgh, B.; Noordam, M.J.; Hovingh, S.E.; van Pelt, A.M.; van der Veen, F.; Repping, S. Y chromosome TSPY copy numbers and semen quality. Fertil. Steril.?2010, 94, 1744–1747.
[24]
Vodicka, R.; Vrtel, R.; Dusek, L.; Singh, A.R.; Krizova, K.; Svacinova, V.; Horinova, V.; Dostal, J.; Oborna, I.; Brezinova, J.; et al. TSPY gene copy number as a potential new risk factor for male infertility. Reprod. Biomed. Online?2007, 14, 579–587.
[25]
Sonnhammer, E.L.; Durbin, R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene?1995, 167, GC1–10.
[26]
Chenna, R.; Sugawara, H.; Koike, T.; Lopez, R.; Gibson, T.J.; Higgins, D.G.; Thompson, J.D. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res.?2003, 31, 3497–3500.
[27]
Kim, H.S.; Takenaka, O. A comparison of TSPY genes from Y-chromosomal DNA of the great apes and humans: sequence, evolution, and phylogeny. Am. J. Phys Anthropol.?1996, 100, 301–309.
[28]
Mazeyrat, S.; Mitchell, M.J. Rodent Y chromosome TSPY gene is functional in rat and non-functional in mouse. Hum. Mol. Genet.?1998, 7, 557–562.
[29]
Vogel, T.; Boettger-Tong, H.; Nanda, I.; Dechend, F.; Agulnik, A.I.; Bishop, C.E.; Schmid, M.; Schmidtke, J. A murine TSPY. Chromosome Res.?1998, 6, 35–40.
[30]
Hamilton, C.K.; Favetta, L.A.; Di Meo, G.P.; Floriot, S.; Perucatti, A.; Peippo, J.; Kantanen, J.; Eggen, A.; Iannuzzi, L.; King, W.A. Copy number variation of testis-specific protein, Y-encoded (TSPY) in 14 different breeds of cattle (Bos taurus). Sex Dev.?2009, 3, 205–213.
[31]
Jakubiczka, S.; Schnieders, F.; Schmidtke, J. A bovine homologue of the human TSPY gene. Genomics?1993, 17, 732–735.
[32]
Vogel, T.; Schmidtke, J. Structure and function of TSPY, the Y-chromosome gene coding for the “testis-specific protein”. Cytogenet. Cell Genet.?1998, 80, 209–213.
[33]
Bustamante, C.D.; Fledel-Alon, A.; Williamson, S.; Nielsen, R.; Hubisz, M.T.; Glanowski, S.; Tanenbaum, D.M.; White, T.J.; Sninsky, J.J.; Hernandez, R.D.; et al. Natural selection on protein-coding genes in the human genome. Nature?2005, 437, 1153–1157.
[34]
Voight, B.F.; Kudaravalli, S.; Wen, X.; Pritchard, J.K. A map of recent positive selection in the human genome. PLoS Biol.?2006, 4, e72.
[35]
Tyler-Smith, C.; Krausz, C. The will-o'-the-wisp of genetics-hunting for the azoospermia factor gene. N Engl. J. Med.?2009, 360, 925–927.
[36]
Sun, C.; Skaletsky, H.; Birren, B.; Devon, K.; Tang, Z.; Silber, S.; Oates, R.; Page, D.C. An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nat. Genet.?1999, 23, 429–432.
[37]
Luddi, A.; Margollicci, M.; Gambera, L.; Serafini, F.; Cioni, M.; De Leo, V.; Balestri, P.; Piomboni, P. Spermatogenesis in a man with complete deletion of USP9Y. N Engl. J. Med.?2009, 360, 881–885.
[38]
Perry, G.H.; Tito, R.Y.; Verrelli, B.C. The evolutionary history of human and chimpanzee Y-chromosome gene loss. Mol. Biol. Evol.?2007, 24, 853–859.
[39]
Wallace, H.; Birnstiel, M.L. Ribosomal cistrons and the nucleolar organizer. Biochim. Biophys. Acta?1966, 114, 296–310.
[40]
Kedes, L.H.; Birnstiel, L.H. Reiteration and clustering of DNA sequences complementary to histone messenger RNA. Nat. New Biol.?1971, 230, 165–169.