All Title Author
Keywords Abstract

Agronomy  2012 

Impact of Molecular Technologies on Faba Bean (Vicia faba L.) Breeding Strategies

DOI: 10.3390/agronomy2030132

Keywords: biotic stress, abiotic stress, traditional breeding, molecular markers, marker-assisted selection, molecular breeding, genomics

Full-Text   Cite this paper   Add to My Lib


Faba bean ( Vicia faba L.) is a major food and feed legume because of the high nutritional value of its seeds. The main objectives of faba bean breeding are to improve yield, disease resistance, abiotic stress tolerance, seed quality and other agronomic traits. The partial cross-pollinated nature of faba bean introduces both challenges and opportunities for population development and breeding. Breeding methods that are applicable to self-pollinated crops or open-pollinated crops are not highly suitable for faba bean. However, traditional breeding methods such as recurrent mass selection have been established in faba bean and used successfully in breeding for resistance to diseases. Molecular breeding strategies that integrate the latest innovations in genetics and genomics with traditional breeding strategies have many potential applications for future faba bean cultivar development. Hence, considerable efforts have been undertaken in identifying molecular markers, enriching genetic and genomic resources using high-throughput sequencing technologies and improving genetic transformation techniques in faba bean. However, the impact of research on practical faba bean breeding and cultivar release to farmers has been limited due to disconnects between research and breeding objectives and the high costs of research and implementation. The situation with faba bean is similar to other small crops and highlights the need for coordinated, collaborative research programs that interact closely with commercially focused breeding programs to ensure that technologies are implemented effectively.


[1]  Crépona, K.; Marget, P.; Peyronnet, C.; Carrouéea, B.; Arese, P.; Duc, G. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crop. Res. 2010, 115, 329–339, doi:10.1016/j.fcr.2009.09.016.
[2]  FAOSTAT. 2010 Production—Crops. Available online: (accessed on 2 May 2012).
[3]  Roman, B.; Torres, A.M.; Rubiales, D.; Cubero, J.I.; Satovic, Z. Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forsk.) resistance in faba bean (Vicia faba L.). Genome 2002, 45, 1057–1063, doi:10.1139/g02-082.
[4]  Torres, A.M.; Roman, B.; Avila, C.M.; Satovic, Z.; Rubiales, D.; Sillero, J.C.; Cubero, J.I.; Moreno, M.T. Faba bean breeding for resistance against biotic stresses: Towards application of marker technology. Euphytica 2006, 147, 67–80, doi:10.1007/s10681-006-4057-6.
[5]  Ellwood, S.R.; Phan, H.T.; Jordan, M.; Hane, J.; Torres, A.M.; Avila, C.M.; Cruz-Izquierdo, S.; Oliver, R.P. Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genomics 2008, 9, 380.
[6]  van de Ven, W.T.G.; Waugh, R.; Duncan, N.; Ramsay, G.; Dow, N.; Powell, W. Development of a genetic linkage map in Vicia faba using molecular and biochemical techniques. Asp. Appl. Biol. 1991, 27, 49–54.
[7]  Ramsay, G.; van de Ven, W.; Waugh, R.; Griffiths, D.W.; Powell, W. AEP (l’Association Européene de Recherche sur les Protéagineuse). Mapping quantitative trait loci in Faba beans. Copenhagen, Denmark: 1995; pp. 444–445.
[8]  Satovic, Z.; Torres, A.M.; Cubero, J.I. Genetic mapping of new morphological, isozyme and RAPD markers in Vicia faba L. using trisomics. Theor. Appl. Genet. 1996, 93, 1130–1138, doi:10.1007/BF00230136.
[9]  Torres, A.M.; Avila, C.M.; Gutierrez, N.; Palomino, C.; Moreno, M.T.; Cubero, J.I. Marker-assisted selection in faba bean (Vicia faba L.). Field Crop. Res. 2010, 115, 243–252, doi:10.1016/j.fcr.2008.12.002.
[10]  Avila, C.M.; Nadal, S.; Moreno, M.T.; Torres, A.M. Development of a simple PCR-based marker for the determination of growth habit in Vicia faba L. using a candidate gene approach. Mol. Breed. 2006, 17, 185–190, doi:10.1007/s11032-005-4075-4.
[11]  Avila, C.M.; Atienza, S.G.; Moreno, M.T.; Torres, A.M. Development of a new diagnostic marker for growth habit selection in faba bean (Vicia faba L.) breeding. Theor. Appl. Genet. 2007, 115, 1075–1082.
[12]  Gutierrez, N.; Avila, C.M.; Duc, G.; Marget, P.; Suso, M.J.; Moreno, M.T.; Torres, A.M. Markers to assist selection for low vicine and convicine contents in faba bean (Vicia faba L.). Theor. Appl. Genet. 2006, 114, 59–66.
[13]  Gutierrez, N.; Avila, C.; Rodriguez-Suarez, C.; Moreno, M.; Torres, A. Development of SCAR markers linked to a gene controlling absence of tannins in faba bean. Mol. Breed. 2007, 19, 305–314.
[14]  Gutierrez, N.; Avila, C.M.; Moreno, M.T.; Torres, A.M. Development of SCAR markers linked to zt-2, one of the genes controlling absence of tannins in faba bean. Aust. J. Agric. Res. 2008, 59, 62–68.
[15]  Tanno, K.; Willcox, G. How fast was wild wheat domesticated? Science 2006, 311, 1886.
[16]  Cubero, J.I. On the evolution of Vicia faba L. Theor. Appl. Genet. 1974, 45, 47–51.
[17]  Paull, J.G.; Kimber, R.; van Leur, J. Faba bean breeding and production in Australia. Grain Legum. 2011, 56, 15–16.
[18]  Duc, G.; Bao, S.; Baum, M.; Redden, R.; Sadiki, M.; Suso, M.J.; Vishniakova, M.; Zong, X. Diversity maintenance and use of Vicia faba L. genetic resources. Field Crops Res. 2010, 115, 270–278, doi:10.1016/j.fcr.2008.10.003.
[19]  Bond, D.A. Recent developments in breeding field beans (Vicia faba L.). Plant Breed. 1987, 99, 1–26, doi:10.1111/j.1439-0523.1987.tb01144.x.
[20]  Briggs, F.N.; Knowles, P.F. Introduction to Plant Breeding; Reinhold Publishing Corporation: New York, NY, USA, 1967; p. 426.
[21]  Link, W.; Schill, B.; Kittlitz, E.V. Breeding for wide adaptation in faba bean. Euphytica 1996, 92, 185–190, doi:10.1007/BF00022844.
[22]  Bond, D.A. Prospects for commercialisation of F1 hybrid field beans Vicia faba L. Euphytica 1989, 41, 81–86, doi:10.1007/BF00022415.
[23]  Link, W.; Ederer, W.; Gumber, R.K.; Melchinger, A.E. Detection and characterization of two new CMS systems in faba bean (Vicia faba). Plant Breed. 1997, 116, 158–162.
[24]  Hanounik, S.B.; Robertson, L.D. Resistance in Vicia faba germplasm to blight caused by Ascochyta fabae. Plant Dis. 1989, 73, 202–205, doi:10.1094/PD-73-0202.
[25]  Kittlitz, E.V.; Ibrahim, K.I.M.; Ruckenbauer, P.; Robertson, L.D. Analysis and use of inter-pool crosses (Mediterranean × Central European) in faba beans (Vicia faba L.). Plant Breed. 1993, 110, 307–314.
[26]  Annicchiarico, P.; Iannucci, A. Breeding strategy for faba bean in Southern Europe based on cultivar responses across climatically contrasting environments. Crop Sci. 2008, 48, 983–991, doi:10.2135/cropsci2007.09.0501.
[27]  Bao, S. Yunnan Academy of Agricultural Sciences: Kunming, China. Personal communication, 2004.
[28]  Frauen, M.; Sass, O. Inheritance and performance of the stiff-strawed mutant in Vicia faba L. In Proceedings of XII EUCARPIA Congress, G?ttingen, Germany, 1989; 15, pp. 13–18.
[29]  Nadal, S.; Moreno, M.T.; Cubero, J.I. Registration of “Retaca” faba bean. Crop Sci. 2004, 44, 1865, doi:10.2135/cropsci2004.1865.
[30]  Adisarwanto, T.; Knight, R. Effect of sowing date and plant density on yield and yield components in the faba bean. Aust. J. Agric. Res. 1997, 48, 1161–1168, doi:10.1071/A96050.
[31]  Loss, S.P.; Siddique, K.H.M.; Jettner, R.; Martin, L.D. Responses of faba bean (Vicia faba L.) to sowing rate in south-western Australia. I. Seed yield and economic optimum plant density. Aust. J. Agric. Res. 1998, 49, 989–997, doi:10.1071/A98002.
[32]  Sillero, J.C.; Villegas-Fernández, A.M.; Thomas, J.; Rojas-Molina, M.M.; Emeran, A.A.; Fernández-Aparicio, M.; Rubiales, D. Faba bean breeding for disease resistance. Field Crops Res. 2010, 115, 297–307, doi:10.1016/j.fcr.2009.09.012.
[33]  Kharbanda, P.D.; Bernier, C.C. Cultural and pathogenic variability among isolates of Ascochyta fabae. Can. J. Plant Pathol. 1980, 2, 139–142, doi:10.1080/07060668009501429.
[34]  Sillero, J.C.; Morenoa, M.T.; Rubialesb, D. Characterization of new sources of resistance to Uromyces viciae-fabae in a germplasm collection of Vicia faba. Plant Pathol. 2000, 49, 389–395, doi:10.1046/j.1365-3059.2000.00459.x.
[35]  Hanounik, S.B.; Robertson, L.D. Resistance in Vicia faba plasm to blight caused by Ascochyta fabae. Plant Disease 1989, 73, 202–205, doi:10.1094/PD-73-0202.
[36]  Kimber, R.B.E.; Davidson, J.A.; Paull, J.G. Using genetic diversity within faba bean germplasm to develop resistance to ascochyta blight. In Proceedings of the1st International Ascochyta Workshop on Grain Legumes, Le Trodet, France, 2–6 July 2006.
[37]  Bond, D.A.; Jellis, G.J.; Rowland, G.G.; Le Guen, J.; Robertson, L.D.; Khalil, S.A.; Li-Juan, L. Present status and future strategy in breeding faba beans (Vicia faba L.) for resistance to biotic and abiotic stresses. Euphytica 1994, 73, 151–166, doi:10.1007/BF00027191.
[38]  Hanounik, S.B.; Robertson, L.D. New sources of resistance in Vicia faba to chocolate spot caused by Botrytis fabae. Plant Dis. 1988, 72, 696–698, doi:10.1094/PD-72-0696.
[39]  Bouhassan, A.; Sadiki, M.; Tivoli, B. Evaluation of a collection of faba bean (Vicia faba L.) genotypes originating from the Maghreb for resistance to chocolate spot (Botrytis fabae) by assessment in the field and laboratory. Euphytica 2004, 135, 55–62, doi:10.1023/B:EUPH.0000009540.98531.4d.
[40]  Paull, J.G. University of Adelaide: Adelaide, Australia. Personal observation, 2012.
[41]  Rashid, K.Y.; Bernier, C.C.; Conner, R.L. Evaluation of fava bean for resistance to Ascochyta fabae and development of host differentials for race identification. Plant Dis. 1991, 75, 852–855, doi:10.1094/PD-75-0852.
[42]  Kohpina, S.; Knight, R.; Stoddard, F.L. Variability of Ascochyta fabae in South Australia. Aust. J. Agric. Res. 1999, 50, 1475–1481, doi:10.1071/AR98204.
[43]  Hanounik, S.B.; Maliha, N. Horizontal and vertical resistance in Vicia faba to chocolate spot caused by Botrytis fabae. Plant Dis. 1986, 70, 770–773, doi:10.1094/PD-70-770.
[44]  Rashid, K.Y.; Bernier, C.C. Evaluation of resistance in Vicia faba to two isolates of the rust fungus Uromyces viciae-fabae from Manitoba. Plant Dis. 1984, 68, 16–18.
[45]  Villegas-Fernández, A.M.; Sillero, J.C.; Emeran, A.A.; Flores, F.; Rubiales, D. Multiple-disease resistance in Vicia faba: multi-environment field testing for identification of combined resistance to rust and chocolate spot. Field Crops Res. 2011, 124, 59–65, doi:10.1016/j.fcr.2011.06.004.
[46]  Rubiales, D.; Fernández-Aparicio, M. Innovations in parasitic weeds management in legume crops. A review. Agron. Sustain. Dev. 2012, 32, 433–449, doi:10.1007/s13593-011-0045-x.
[47]  Gressel, J.; Hanafi, A.; Head, G.; Marasas, W.; Obilana, A.B.; Ochanda, J.; Souissi, T.; Tzotzos, G. Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Prot. 2004, 23, 661–689, doi:10.1016/j.cropro.2003.11.014.
[48]  Pérez-de-Luque, A.; Eizenberg, H.; Grenz, J.H.; Sillero, J.C.; ?vila, C.; Sauerborn, J.; Rubiales, D. Broomrape management in faba bean. Field Crops Res. 2010, 115, 319–328, doi:10.1016/j.fcr.2009.02.013.
[49]  Joel, D.M. The long-term approach to parasitic weeds control: manipulation of specific developmental mechanisms of the parasite. Crop Protect. 2000, 19, 753–758, doi:10.1016/S0261-2194(00)00100-9.
[50]  Mauromicale, G.; Restuccia, G.; Marchese, M. Soil solarization, a nonchemical technique for controlling Orobanche crenata and improving yield of faba bean. Agronomie 2001, 21, 757–765, doi:10.1051/agro:2001167.
[51]  Rubiales, D. Parasitic plants, wild relatives and the nature of resistance. New Phytol. 2003, 160, 459–461, doi:10.1046/j.1469-8137.2003.00929.x.
[52]  Stoddard, F.L.; Nicholas, A.H.; Rubiales, D.; Thomas, J.; Villegas-Fernández, A.M. Integrated pest management in faba bean. Field Crops Res. 2010, 115, 308–318, doi:10.1016/j.fcr.2009.07.002.
[53]  Cubero, J.I. Breeding for resistance to Orobanche species: A review. In Proceedings of the International Workshop on Orobanche Research, Obermarchtal, Germany, 19–22 August 1989; Wegmann, K., Musselman, L.J., Eds.; Eberhard-Karls-Universit?t: Tübingen, Germany, 1991; pp. 257–277.
[54]  Sillero, J.C.; Rubiales, D.; Cubero, J.I. Risks of Orobanche screenings based only on final number of emerged shoots per plant. In Advances in Parasitic Plant Research; Moreno, M.T., Cubero, J.I., Berner, D., Joel, D., Musselman, L.J., Parker, C., Eds.; Junta de Andalucìa: Córdoba, Spain, 1996; pp. 652–657.
[55]  Cubero, J.I.; Moreno, M.T. Studies on resistance to Orobanche crenata in Vicia faba. In Resistance to Broomrape—The State of the Art; Cubero, J.I., Moreno, M.T., Rubiales, D., Sillero, J.C., Eds.; DGIFA: Junta de Andalucía, Sevilla, Spain, 1999; pp. 9–15.
[56]  Muehlbauer, F.J.; Kaiser, W.J.; Simon, C.J. Potential for wild species in cool season food legume breeding. Euphytica 1993, 73, 109–114.
[57]  Khan, H.R.; Paull, J.G.; Siddique, K.H.M.; Stoddard, F.L. Faba bean breeding for drought-affected environments: A physiological and agronomic perspective. Field Crops Res. 2010, 115, 279–286, doi:10.1016/j.fcr.2009.09.003.
[58]  French, R.J. The risk of vegetative water deficit in early-sown faba bean (Vicia faba L.) and its implications for crop productivity in a Mediterranean-type environment. Crop Pasture Sci. 2010, 61, 566–577, doi:10.1071/CP09372.
[59]  Oweis, T.; Hachum, A.; Pala, M. Faba bean productivity under rainfed and supplemental irrigation in northern Syria. Agr. Water Manag. 2005, 73, 57–72, doi:10.1016/j.agwat.2004.09.022.
[60]  Solaiman, Z.; Colmer, T.D.; Loss, S.P.; Thomson, B.D.; Siddique, K.H.M. Growth responses of cool-season grain legumes to transient waterlogging. Aust. J. Agric. Res. 2007, 58, 406–412, doi:10.1071/AR06330.
[61]  Loss, S.P.; Siddique, K.H.M.; Tennant, D. Adaptation of faba bean (Vicia faba L.) to dryland Mediterranean-type environments. III. Water use and water-use efficiency. Field Crop. Res. 1997, 54, 153–162, doi:10.1016/S0378-4290(97)00042-7.
[62]  Turpin, J.E.; Robertson, M.J.; Hillcoat, N.S.; Herridge, D.F. Faba bean (Vicia faba) in Australia's northern grains belt: Canopy development, biomass, and nitrogen accumulation and partitioning. Aust. J. Agric. Res. 2002, 53, 227–237, doi:10.1071/AR00186.
[63]  Khan, H.R.; Paull, J.G.; Siddique, K.H.M.; Stoddard, F.L. Faba bean breeding for drought-affected environments: A physiological and agronomic perspective. Field Crops Res. 2009, 115, 279–286.
[64]  Khan, H.R.; Link, W.; Hocking, T.J.H.; Stoddard, F.L. Evaluation of physiological traits for improving drought tolerance in faba bean (Vicia faba L.). Plant Soil 2007, 292, 205–217, doi:10.1007/s11104-007-9217-5.
[65]  Stelling, D. Heterosis and hybrid performance in topless faba beans (Vicia faba L.). Euphytica 1997, 97, 73–79.
[66]  Boddi, M.; Enneking, D.; Materne, M.; Paull, J.; Noy, D. Genetic variability in faba beans (Vicia faba) in response to NaCl. Contemporary crop improvement—A tropical view. In Proceedings of the14th Australasian Plant Breeding (APB) Conference and 11th Society for the Advancement of Breeding Researches in Asia and Oceania (SABRAO) Conference, Cairns, Australia, 10–14 August 2009.
[67]  Tavakkoli, E.; Paull, J.; Rengasamy, P.; McDonald, G.K. Comparing genotypic variation in faba bean (Vicia faba L.) in response to salinity in hydroponic and field experiments. Field Crop. Res. 2012, 127, 99–108, doi:10.1016/j.fcr.2011.10.016.
[68]  Rathjen, A.H. The Response of Grain Legumes to BoronHonours Thesis, The University of Adelaide, Adelaide, Australia, 1987.
[69]  Hall, A.E. Breeding for heat tolerance. Plant Breed. Rev. 1992, 10, 129–168.
[70]  Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Env. Exp. Bot. 2007, 61, 199–223, doi:10.1016/j.envexpbot.2007.05.011.
[71]  Arbaoui, M.; Balko, C.; Link, W. Study of faba bean (Vicia faba L.) winter-hardiness and development of screening methods. Field Crop. Res. 2008, 106, 60–67, doi:10.1016/j.fcr.2007.10.015.
[72]  Inci, N.E.; Toker, C. Screening and selection of faba beans (Vicia faba L.) for cold tolerance and comparison to wild relatives. Genet. Resour. Crop Evol. 2011, 58, 1169–1175, doi:10.1007/s10722-010-9649-2.
[73]  Nassar-Abbas, S.M. Investigation of Environmental Staining and Storage on Discolouration and Cooking Quality in Faba Bean (Vicia faba L.)Ph.D. Thesis, The University of Western Australia, Perth, Australia, 2007.
[74]  Larralde, J.; Martinez, J.A. Nutritional value of faba bean: Effects on nutrient utilization, protein turnover and immunity. Options Méditerr. 1991, 10, 111–117.
[75]  El-Sherbeeny, M.; Robertson, L.D. Protein content variation in a pure line faba bean (Vicia faba) collection. J. Sci. Food Agric. 2006, 58, 193–196, doi:10.1002/jsfa.2740580206.
[76]  Link, W. Methods and objectives in fababean breeding. In Proceedings of the International Workshop on Faba Bean Breeding and Agronomy, Córdoba, Spain, 25–27 October 2006; Junta de Andalucia: Córdoba, Spain, 2006; pp. 35–40.
[77]  Kuman, R.; Singh, M. Tannins: Their adverse role in ruman nutrition. J. Agric. Food Chem. 1984, 32, 447, doi:10.1021/jf00123a006.
[78]  Bartolomé, B.; Quesada, C.; Gómez-Cordibés, C.; Hernandez, T.; Estrella, I. New contributions to the inhibition study of R-amylase and trypsin by phenolic compounds. In Bioactive Substances in Food of Plant Origin; Kozlowska, H., Fornal, J., Zdunczyk, Eds.; Polish Academy of Sciences: Olstyn, Poland, 1994; Volume 1, pp. 233–238.
[79]  Nelson, L.D.; Cox, M. Glycolysis, gluconeogenesis, and the pentose phosphate pathway. In Principles of Biochemistry; Freeman: New York, NY, USA, 2005; p. 551.
[80]  Moose, S.P.; Mumm, R.H. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 2008, 147, 969–977, doi:10.1104/pp.108.118232.
[81]  Collard, B.C.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. Soc. Biol. Sci. 2008, 363, 557–572.
[82]  Johnson, G.R.; McCuddin, Z.P. Maize and the biotech industry. In Handbook of Maize: Its Biology; Bennetzen, J.L., Hake, S.C., Eds.; Springer: Berlin, Germany, 2009; pp. 115–140.
[83]  Collard, B.C.Y.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 2005, 142, 169–196, doi:10.1007/s10681-005-1681-5.
[84]  Torres, A.M.; Weeden, N.F.; Martin, A. Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor. Appl. Genet. 1993, 85, 937–945.
[85]  Pozarkova, D.; Koblizkova, A.; Román, B.; Torres, A.M.; Lucretti, S.; Lysak, M.; Dolezel, J.; Macas, J. Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol. Plant. 2002, 45, 337–345, doi:10.1023/A:1016253214182.
[86]  Alghamdi, S.; Migdadi, H.; Ammar, M.; Paull, J.; Siddique, K.H.M. Faba bean genomics: Current status and future prospects. Euphytica 2012.
[87]  Avila, C.M.; Sillero, J.C.; Rubiales, D.; Moreno, M.T.; Torres, A.M. Identification of RAPD markers linked to the Uvf-1 gene conferring hypersensitive resistance against rust (Uromyces viciae-fabae) in Vicia faba L. Theor. Appl. Genet. 2003, 107, 353–358, doi:10.1007/s00122-003-1254-8.
[88]  Roman, B.; Alfaro, C.; Torres, A.M.; Moreno, M.T.; Satovic, Z.; Pujadas, A.; Rubiales, D. Genetic relationships among Orobanche species as revealed by RAPD analysis. Ann. Bot. 2003, 91, 637–642, doi:10.1093/aob/mcg060.
[89]  Avila, C.M.; Satovic, Z.; Sillero, J.C.; Rubiales, D.; Moreno, M.T.; Torres, A.M. Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean (Vicia faba L.). Theor. Appl. Genet. 2004, 108, 1071–1078, doi:10.1007/s00122-003-1514-7.
[90]  Roman, B.; Satovic, Z.; Avila, C.M.; Rubiales, D.; Moreno, M.T.; Torres, A.M. Locating genes associated with Ascochyta fabae resistance in Vicia faba. Aust. J. Agric. Res. 2003, 54, 85–90.
[91]  Diaz-Ruiz, R.; Torres, A.M.; Satovic, Z.; Gutierrez, M.V.; Cubero, J.I.; Roman, B. Validation of QTLs for Orobanche crenata resistance in faba bean (Vicia faba L.) across environments and generations. Theor. Appl. Genet. 2010, 120, 909–919, doi:10.1007/s00122-009-1220-1.
[92]  Satovic, Z.; Avila, C.; Palomino, C.; Vitale, S.; Gutierrez, N.; Cruz-Izquierdo, S.; Gutierrez, M.V.; Ruiz, M.D.; Oca?a, S.; Torres, A.M. Towards a unified and functional consensus linkage map in faba bean (Vicia faba L.)Candidate Gene Identification and Breeding Applications, 2012.
[93]  Díaz-Ruiz, R.; Satovic, Z.; Avila, C.M.; Alfaro, C.M.; Gutierrez, M.V.; Torres, A.M.; Román, B. Confirmation of QTLs controlling Ascochyta fabae resistance in different generations of faba bean (Vicia faba L.). Crop Pasture Sci. 2009, 60, 353–361, doi:10.1071/CP08190.
[94]  Lander, E.; Kruglyak, L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat. Genet. 1995, 11, 241–247, doi:10.1038/ng1195-241.
[95]  Sillero, J.C.; Fondevilla, S.; Davidson, J.; Vaz Patto, M.C.; Warkentin, T.; Thomas, J.; Rubiales, D. Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica 2006, 147, 255–272, doi:10.1007/s10681-006-6544-1.
[96]  Duvick, D.N. Plant breeding, an evolutionary concept. Crop Sci. 1996, 36, 539–548, doi:10.2135/cropsci1996.0011183X003600030001x.
[97]  Roman, B.; Satovic, Z.; Rubiales, D.; Torres, A.M.; Cubero, J.I.; Katzir, N.; Joel, D.M. Variation among and within populations of the parasitic weed Orobanche crenata from Spain and Israel revealed by Inter Simple Sequence Repeat markers. Phytopathology 2002, 92, 1262–1266, doi:10.1094/PHYTO.2002.92.12.1262.
[98]  Nassib, A.M.; Ibrahim, A.A.; Khalil, S.A. Breeding for resistance to Orobanche. In Faba Bean Improvement; Hawtin, G., Webb, C., Eds.; Martinus Nijhoff: Hague, The Netherlands, 1982; pp. 199–206.
[99]  Cubero, J.I.; Moreno, M.T.; Hernández, L. A faba bean (Vicia faba L.) cultivar resistant to broomrape (Orobanche crenata Forsk.). In Proceedings of the First Europe Conference on Grain Legumes; Angers, F., Ed.; Association Europeenne des Protéagineux: Paris, France, 1992; pp. 41–42.
[100]  Austin, D.F.; Lee, M. Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor. Appl. Genet. 1996, 92, 817–826, doi:10.1007/BF00221893.
[101]  Duc, G.; Sixdenier, G.; Lila, M.; Furstoss, V. Search of Genetic Variability for Vicine and Convicine Content in Vicia faba L. A first report of a gene which codes for nearly zero-vicine and zero-convicine contents. In Recent Advances of Research in Antinutritional Factors in Legume Seeds; Huisman, J., van der Poel, A.F.B., Liener, I.E., Eds.; Pudoc: Wageningen, The Netherlands, 1989; pp. 305–313.
[102]  Gutierrez, N.; Avila, C.M.; Duc, G.; Marget, P.; Suso, M.J.; Moreno, M.T.; Torres, A.M. CAPs markers to assist selection for low vicine and convicine contents in faba bean (Vicia faba L.). Theor. Appl. Genet. 2006, 114, 59–66, doi:10.1007/s00122-006-0410-3.
[103]  Cabrera, A.; Martin, A. Variation in tannin content in Vicia faba L. J. Agric. Sci. 1986, 106, 377–382, doi:10.1017/S0021859600063978.
[104]  Duc, G.; Marget, P.; Esnault, R.; Le Guen, J.; Bastianelli, D. Genetic variability for feeding value of faba bean seeds (Vicia faba): Comparative chemical composition of isogenics involving zero-tannin and zero-vicine genes. J. Agric. Sci. 1999, 133, 185–196, doi:10.1017/S0021859699006905.
[105]  Varshney, R.K.; Close, T.J.; Singh, N.K.; Hoisington, D.A.; Cook, D.R. Orphan legume crops enter the genomics era! Curr. Opin. Plant. Biol. 2009, 12, 202–210, doi:10.1016/j.pbi.2008.12.004.
[106]  Kaur, S.; Cogan, N.O.; Pembleton, L.W.; Shinozuka, M.; Savin, K.W.; Materne, M.; Forster, J.W. Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics 2011, 12, 265.
[107]  Kaur, S.; Pembleton, L.; Cogan, N.; Savin, K.; Leonforte, T.; Paull, J.; Materne, M.; Forster, J. Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genomics 2012, 13, 104.
[108]  Sato, S.; Nakamura, Y.; Asamizu, E.; Isobe, S.; Tabata, S. Genome sequencing and genome resources in model legumes. Plant Physiol. 2007, 144, 588–593, doi:10.1104/pp.107.097493.
[109]  Sandal, N.; Petersen, T.R.; Murray, J.; Umehara, Y.; Karas, B.; Yano, K.; Kumagai, H.; Yoshikawa, M.; Saito, K.; Hayashi, M.; et al. Genetics of symbiosis in Lotus japonicus: Recombinant inbred lines, comparative genetic maps, and map position of 35 symbiotic loci. Mol. Plant Microbe Interact. 2006, 19, 80–91, doi:10.1094/MPMI-19-0080.
[110]  Choi, H.-K.; Mun, J.-H.; Kim, D.-J.; Zhu, H.; Baek, J.-M.; Mudge, J.; Roe, B.; Ellis, N.; Doyle, J.; Kiss, G.B.; et al. Estimating genome conservation between crop and model legume species. Proc. Natl. Acad. Sci. USA 2004, 101, 15289–15294.
[111]  Wang, X.; Sato, S.; Tabata, S.; Kawasaki, S. A high-density linkage map of Lotus japonicus based on AFLP and SSR markers. DNA Res. 2008, 15, 323–332, doi:10.1093/dnares/dsn022.
[112]  Gallardo, K.; Firnhaber, C.; Zuber, H.; Hericher, D.; Belghazi, M.; Henry, C.; Kuster, H.; Thompson, R. A combined proteome and transcriptome analysis of developing Medicago truncatula seeds: evidence for metabolic specialization of maternal and filial tissues. Mol. Cell Proteomics 2007, 6, 2165–2179, doi:10.1074/mcp.M700171-MCP200.
[113]  Sanchez, D.H.; Lippold, F.; Redestig, H.; Hannah, M.A.; Erban, A.; Kramer, U.; Kopka, J.; Udvardi, M.K. Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus. Plant J. 2008, 53, 973–987.
[114]  Watson, B.S.; Asirvatham, V.S.; Wang, L.; Sumner, L.W. Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol. 2003, 131, 1104–1123, doi:10.1104/pp.102.019034.
[115]  Gonzales, M.D.; Archuleta, E.; Farmer, A.; Gajendran, K.; Grant, D.; Shoemaker, R.; Beavis, W.D.; Waugh, M.E. The Legume Information System (LIS): an integrated information resource for comparative legume biology. Nucleic Acids Res. 2005, 33, D660–D665.
[116]  Rispail, N.; Péter, K.; Kiss, G.B.; Ellis, T.H.N.; Gallardo, K.; Thompson, R.D.; Prats, E.; Larrainzar, E.; Ladrera, R.; González, E.M.; et al. Model legumes contribute to faba bean breeding. Field Crops Res. 2010, 115, 253–269, doi:10.1016/j.fcr.2009.03.014.
[117]  Kaló, P.; Endre, G.; Zimányi, L.; Csanádi, G.; Kiss, G.B. Construction of an improved linkage map of diploid alfalfa (Medicago sativa). Theor. Appl. Genet. 2000, 100, 641–657, doi:10.1007/s001220051335.
[118]  Cannon, S.B.; Sterck, L.; Rombauts, S.; Sato, S.; Cheung, F.; Gouzy, J.; Wang, X.; Mudge, J.; Vasdewani, J.; Schiex, T.; et al. Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc. Natl. Acad. Sci. USA 2006, 103, 14959–14964.
[119]  Phan, H.T.; Ellwood, S.R.; Hane, J.K.; Ford, R.; Materne, M.; Oliver, R.P. Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theor. Appl. Genet. 2007, 114, 549–558, doi:10.1007/s00122-006-0455-3.
[120]  Roman, B.; Satovic, Z.; Pozarkova, D.; Macas, J.; Dolezel, J.; Cubero, J.I.; Torres, A.M. Development of a composite map in Vicia faba, breeding applications and future prospects. Theor. Appl. Genet. 2004, 108, 1079–1088, doi:10.1007/s00122-003-1515-6.
[121]  Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183.
[122]  Chen, Y.-L.; Huang, R.; Xiao, Y.-M.; Lu, P.; Chen, J.; Wang, X.-C. Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2. Plant Physiol. 2004, 136, 4096–4103, doi:10.1104/pp.104.047837.
[123]  Gao, X.Q.; Li, C.G.; Wei, P.C.; Zhang, X.Y.; Chen, J.; Wang, X.C. The dynamic changes of tonoplasts in guard cells are important for stomatal movement in Vicia faba. Plant Physiol. 2005, 139, 1207–1216.
[124]  Perlick, A.M.; Frühling, M.; Schr?der, G.; Frosch, S.C.; Pühler, A. The broad bean gene VfNOD32 encodes a nodulin with sequence similarities to chitinases that is homologous to (alpha/beta) 8-barrel-type seed proteins. Plant Physiol. 1996, 110, 147–154.
[125]  Hanstein, S.M.; Felle, H.H. CO2-triggered chloride release from guard cells in intact fava bean leaves. Kinetics of the onset of stomatal closure. Plant Physiol. 2002, 130, 940–950, doi:10.1104/pp.004283.
[126]  Li, J.; Assmann, S.M. An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean. Plant Cell 1996, 8, 2359–2368.
[127]  Iwai, S.; Shimomura, N.; Nakashima, A.; Etoh, T. New fava bean guard cell signaling mutant impaired in ABA-induced stomatal closure. Plant Cell Physiol. 2003, 44, 909–913, doi:10.1093/pcp/pcg116.
[128]  Miranda, M.; Borisjuk, L.; Tewes, A.; Heim, U.; Sauer, N.; Wobus, U.; Weber, H. Amino acid permeases in developing seeds of Vicia faba L.: Expression precedes storage protein synthesis and is regulated by amino acid supply. Plant J. 2001, 28, 61–71, doi:10.1046/j.1365-313X.2001.01129.x.
[129]  Horstmann, C.; Schlesier, B.; Otto, A.; Kostka, S.; Müntz, K. Polymorphism of legumin subunits from field bean (Vicia faba L. var. minor) and its relation to the corresponding multigene family. Theor. Appl. Genet. 1993, 86, 867–874, doi:10.1007/BF00212614.
[130]  Weschke, W.; Bassüner, R.; Van Hai, N.; Czihal, A.; Baümlein, H.; Wobus, U. The structure of a Vicia faba vicilin gene. Biochem. Physiol. Pflanzen. 1988, 183, 233–242.
[131]  Tucci, M.; Capparelli, R.; Costa, A.; Rao, R. Molecular heterogeneity and genetics of Vicia faba seed storage proteins. Theor. Appl. Genet. 1991, 81, 50–58.
[132]  Knaak, C.; Roskothen, P.; Roebbelen, G. Symbiotic efficiency of Vicia faba genotypes after field inoculation with different strains of Rhizobium leguminosarum preselected in greenhouse tests. J. Plant Physiol. 1993, 141, 49–53, doi:10.1016/S0176-1617(11)80850-3.
[133]  Hohnjec, N.; Küster, H.; Albus, U.; Frosch, S.C.; Becker, J.D.; Pühler, A.; Perlick, A.M.; Frühling, M. The broad bean nodulin VfENOD18 is a member of a novel family of plant proteins with homologies to the bacterial MJ0577 superfamily. Mol. Gen. Genet. 2000, 264, 241–250, doi:10.1007/s004380000292.
[134]  Perlick, A.M.; Pühler, A. A survey of transcripts expressed specifically in root nodules of broadbean (Vicia faba L.). Plant Mol. Biol. 1993, 22, 957–970, doi:10.1007/BF00028969.
[135]  Küster, H.; Frühling, M.; Perlick, A.M.; Pühler, A. The sucrose synthase gene is predominantly expressed in the root nodule tissue of Vicia faba. Mol Plant Microbe Interact. 1993, 6, 507–514, doi:10.1094/MPMI-6-507.
[136]  Schroder, G.; Fruhling, M.; Puhler, A.; Perlick, A.M. The temporal and spatial transcription pattern in root nodules of Vicia faba nodulin genes encoding glycine-rich proteins. Plant Mol. Biol. 1997, 33, 113–123, doi:10.1023/A:1005779116272.
[137]  Fehlberg, V.; Vieweg, M.F.; Dohmann, E.M.; Hohnjec, N.; Puhler, A.; Perlick, A.M.; Kuster, H. The promoter of the leghaemoglobin gene VfLb29: Functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. J. Exp. Bot. 2005, 56, 799–806, doi:10.1093/jxb/eri074.
[138]  Frühling, M.; Roussel, H.; Gianinazzi-Pearson, V.; Pühler, A.; Perlick, A.M. The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum. Mol. Plant. Microbe Interact. 1997, 10, 124–131.
[139]  Vieweg, M.F.; Frühling, M.; Quandt, H.J.; Heim, U.; B?umlein, H.; Pühler, A.; Küster, H.; Andreas, M.P. The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants. Mol. Plant Microbe Interact. 2004, 17, 62–69, doi:10.1094/MPMI.2004.17.1.62.
[140]  Pickersgill, B.; Jones, J.K.; Ramsay, G.; Stewart, H. Problems and prospects of wild crossing in the genus Vicia for the improvement of faba bean. In Proceedings of the International Worshop on Faba beansKabuli Chickpeas and Lentil in the 1980s, Aleppo, Syria, 16–20 May 1983; Saxena, M.C., Varma, S., Eds.; ICARDA: Aleppo, Syria, 1983.
[141]  Ramsay, G.; Pickersgill, B.; Jones, J.K.; Hammond, L.; Stewart, M.H. Barriers to interspecific hybridization between V. faba and other species of section Faba. In Vicia faba: Agronomy, Physiology and Breeding; Hebblethwaite, P.D., Dawkins, T.C.K., Heath, M.C., Lockwood, G., Eds.; Martinus Nijhoff: Hague, The Netherlands, 1984; pp. 201–208.
[142]  Ladizinsky, G.; Pickersgill, B.; Yamamoto, K. Exploitation of wild relatives of the food legumes. In World Crops: Cool Season Food Legumes; Summerfield, R.J., Ed.; Kluwer Academic Press: Dordrecht, The Netherlands, 1988; p. 967.
[143]  Venketeswaran, S. Tissue culture studies on Vicia faba L. Establishment of culture. Phytomorphology 1962, 12, 300–306.
[144]  Grant, M.; Fuller, K.W. Tissue culture of root cells of Vicia faba. J. Exp. Bot. 1968, 19, 667–680, doi:10.1093/jxb/19.4.667.
[145]  Mitchell, J.P.; Gildow, F.E. The initiation and maintenance of Vicia faba tissue cultures. Physiol. Plant. 1975, 34, 250–253, doi:10.1111/j.1399-3054.1975.tb03831.x.
[146]  R?per, W. Growth and cytology of callus and cell suspension cultures of Vicia faba L. Z. Pflanzenphysiol. 1979, 93, 245–257.
[147]  Bieri, V.; Schmid, J.; Keller, E.R. Shoot tip culture in Vicia faba L. In Efficiency in Plant Breeding: Proceedings of the 10th Congress of the European Association for Research on Plant Breeding, Wageningen, Netherlands, 19–24 June 1983; Lange, W., Zeven, A.C., Hogenboom, N.F., Eds.; EUCARPIA: Wageningen, The Netherlands, 1984; p. 295.
[148]  Selva, E.; Stouffs, M.; Briquet, M. In vitro propagation of Vicia faba L. by micro-cutting and multiple shoot induction. Plant Cell Tiss. Org. Cult. 1989, 18, 167–179, doi:10.1007/BF00047742.
[149]  Thynn, M.; Werner, D. Plantlet regeneration and somatic differentiation in faba bean (Vicia faba L.) from callus culture of various explants. Angewandte Botanik 1987, 61, 483–492.
[150]  Binding, H.; Nehls, R. Regeneration of isolated protoplasts of Vicia faba L. Z. Pflanzenphysiol. 1978, 88, 327–332.
[151]  Binding, H.; Nehls, R. Somatic cell hybridization of Vicia faba and Petunia hybrida. Mol. Gen. Genet. 1978, 164, 137–143, doi:10.1007/BF00267378.
[152]  R?per, W. Callus formation from protoplasts derived from cell suspension cultures of Vicia faba L. . Z. Pflanzenphysiol. 1981, 101, 75–78.
[153]  Tegeder, M.; Gebhardt, D.; Schieder, O.; Pickardt, T. Thidiazuron-induced plant regeneration from protoplasts of Vicia faba cv. Mythos. Plant Cell Rep. 1995, 15, 164–169.
[154]  Griga, M.; Kubalakova, M.; Tejklova, E. Somatic embryogenesis in Vicia faba L. Plant Cell Tiss. Org. Cult. 1987, 9, 167–171, doi:10.1007/BF00044253.
[155]  Pickardt, T.; Huancaruna Perales, E.; Schieder, O. Plant regeneration via somatic embryogenesis in Vicia narbonensis. Protoplasma 1989, 149, 5–10, doi:10.1007/BF01623976.
[156]  Pickardt, T.; Meixner, M.; Schade, V.; Schieder, O. Transformation of Vicia narbonensis via Agrobacterium tumefaciens-mediated gene transfer. Plant Cell Rep. 1991, 9, 535–538.
[157]  Jelenic, S.; Mitrikeski, P.T.; Papes, D.; Jelaska, S. Agrobacterium-mediated transformation of broad bean Vicia faba L. Food Technol. Biotech. 2000, 38, 167–172.
[158]  Siefkes-Boer, H.J.; Noonan, M.J.; Bullock, D.W.; Conner, A.J. Hairy root transformation system in large- seeded grain legumes. Israel J. Plant Sci. 1995, 43, 1–5.
[159]  Saalbach, I.; Pickardt, T.; Machemehl, F.; Saalbach, G.; Schieder, O.; Müntz, K. A chimeric gene encoding the methionine-rich 2S albumin of Brazil nut (Bertholletia excelsa H.B.K.) is stably expressed and inherited in transgenic grain legumes. Mol. Gen. Genet. 1994, 242, 226–236, doi:10.1007/BF00391017.
[160]  Schiemann, J.; Eisenreich, G. Transformation of field bean Vicia faba L. cells expression of a chimeric gene in cultured hairy roots and root-derived callus. Biochem. Physiol. Pflanzen. 1989, 185, 135–140.
[161]  Ramsay, G.; Kumar, A. Transformation of Vicia faba cotyledon and stem tissues by Agrobacterium rhizogenes—Infectivity and cytological studies. J. Exp. Bot. 1990, 41, 841–847, doi:10.1093/jxb/41.7.841.
[162]  B?ttinger, P.; Steinmetz, A.; Schieder, O.; Pickardt, T. Agrobacterium-mediated transformation of Vicia faba. Mol. Breed. 2001, 8, 243–254, doi:10.1023/A:1013711210433.
[163]  Hanafy, M.; Pickardt, T.; Kiesecker, H.; Jacobsen, H.-J. Agrobacterium-mediated transformation of faba bean (Vicia faba L.) using embryo axes. Euphytica 2005, 142, 227–236, doi:10.1007/s10681-005-1690-4.
[164]  Cubero, J.I.; Nadal, S. Faba bean (Vicia faba L.). In Genetic Resources, Chromosome Engineering, and Crop Improvement for Grain legumes; Singh, R.J., Jauhar, P., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2005; p. 163.
[165]  Palomino, C.; Satovic, Z.; Cubero, J.I.; Torres, A.M. Identification and characterization of NBS-LRR class resistance gene analogs in faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.). Genome 2006, 49, 1227–1237, doi:10.1139/g06-071.
[166]  Palomino, C.; Fernandez-Romero, M.D.; Rubio, J.; Torres, A.M.; Moreno, M.T.; Millán, T. Integration of new CAPS and dCAPS-RGA markers into a composite chickpea genetic map and their association with disease resistance. Theor. Appl. Genet. 2008, 118, 671–682.
[167]  Grain Legumes Integrated Project (GLIP). Available online: (accessed on 13 January 2012).
[168]  Mardis, E.R. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008, 24, 133–141, doi:10.1016/j.tig.2007.12.007.
[169]  Morozova, O.; Marra, M.A. Applications of next-generation sequencing technologies in functional genomics. Genomics 2008, 92, 255–264, doi:10.1016/j.ygeno.2008.07.001.
[170]  Huang, X.; Wei, X.; Sang, T.; Zhao, Q.; Feng, Q.; Zhao, Y.; Li, C.; Zhu, C.; Lu, T.; Zhang, Z.; et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 2010, 42, 961–967, doi:10.1038/ng.695.
[171]  Lam, H.-M.; Xu, X.; Liu, X.; Chen, W.; Yang, G.; Wong, F.-L.; Li, M.-W.; He, W.; Qin, N.; Wang, B.; et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 2010, 42, 1053–1059, doi:10.1038/ng.715.
[172]  Dwivedi, S.L.; Crouch, J.H.; Mackill, D.J.; Xu, Y.; Blair, M.W.; Ragot, M.; Upadhyaya, H.D.; Ortiz, R. The molecularization of public sector crop breeding: Progress, problems, and prospects. Adv. Agron. 2007, 95, 163–318, doi:10.1016/S0065-2113(07)95003-8.
[173]  Exploiting Genetic Variability of Resistance Genes in Major European Food Legumes to Improve Varieties For Sustainable Agriculture; ERA-PG Funded Project; GENXPro GmbH: Frankfurt, Germany, 2010. Available online: (accessed on 12 March 2012).
[174]  Kahl, G.; Winter, P.; Horres, R.; Rotter, B.; Jüngling, R.; Consortium, L. Pathogenesis-related genes and genetic variation in potential resistance genes of major European legumes: The LEGRESIST project. In Ascochyta 2009: Proceedings of the Second International Ascochyta Workshop, Pullman, WA, USA, 28 June–2 July 2009; p. 47.
[175]  Goodman, M.M. Plant breeding requirements for applied molecular biology. Crop Sci. 2004, 44, 1913–1914, doi:10.2135/cropsci2004.1913.


comments powered by Disqus

Contact Us


微信:OALib Journal