全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Axioms  2012 

Bundles over Quantum RealWeighted Projective Spaces

DOI: 10.3390/axioms1020201

Keywords: quantum real weighted projective space, principal comodule algebra, noncommutative line bundle

Full-Text   Cite this paper   Add to My Lib

Abstract:

The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1)-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that generalises the quantum disc, so do the constructed principal bundles. In the negative case the principal bundle is proven to be non-trivial and associated projective modules are described. In the positive case the principal bundles turn out to be trivial, and so all the associated modules are free. It is also shown that the circle (co)actions on the quantum Seifert manifold that define quantum real weighted projective spaces are almost free.

References

[1]  Soibel’man, Y.S.; Vaksman, L.L. Algebra of functions on the quantum group SU(n + 1), and odd-dimensional quantum spheres. Algebra i Analiz 1990, 2, 101–120.
[2]  Brzeziński, T.; Zieliński, B. Quantum principal bundles over quantum real projective spaces. J. Geom. Phys. 2012, 62, 1097–1107, doi:10.1016/j.geomphys.2011.12.008.
[3]  Brzeziński, T. Circle actions on a quantum Seifert manifold. In Proceedings of the Corfu Summer Institute 2011 School and Workshops on Elementary Particle Physics and Gravity, Corfu, Greece, 4-18 September 2011.
[4]  Brzeziński, T.; Fairfax, S.A. Quantum teardrops. Comm. Math. Phys. , in press.
[5]  Beggs, E.J.; Brzeziński, T. Line bundles and the Thom construction in noncommutative geometry. J. Noncommut. Geom. , in press.
[6]  Baum, P.F.; Hajac, P.M.; Matthes, R.; Szymański, W. Noncommutative geometry approach to principal and associated bundles. 2007,arXiv:math/0701033. Available online: http://arxiv.org/abs/math/0701033 (accessed on 10 September 2012).
[7]  Brzeziński, T.; Majid, S. Quantum group gauge theory on quantum spaces. Comm. Math. Phys. 1993, 157, 591–638, doi:10.1007/BF02096884.
[8]  Schneider, H.-J. Principal homogeneous spaces for arbitrary Hopf algebras. Israel J. Math. 1990, 72, 167–195, doi:10.1007/BF02764619.
[9]  Hajac, P.M. Strong connections on quantum principal bundles. Comm. Math. Phys. 1996, 182, 579–617, doi:10.1007/BF02506418.
[10]  Woronowicz, S.L. Compact matrix pseudogroups. Comm. Math. Phys. 1987, 111, 613–665, doi:10.1007/BF01219077.
[11]  Brzeziński, T.; Hajac, P.M. The Chern-Galois character. Comptes Rendus Math. (Acad. Sci. Paris Ser. I) 2004, 338, 113–116.
[12]  D?browski, L.; Grosse, H.; Hajac, P.M. Strong connections and Chern-Connes pairing in the Hopf–Galois theory. Comm. Math. Phys. 2001, 220, 301–331, doi:10.1007/s002200100433.
[13]  Beggs, E.J.; Brzeziński, T. An explicit formula for a strong connection. Appl. Categor. Str. 2008, 16, 57–63, doi:10.1007/s10485-007-9087-2.
[14]  Hajac, P.M.; Matthes, R.; Szymański, W. Quantum real projective space, disc and spheres. Algebr. Represent. Theory 2003, 6, 169–192, doi:10.1023/A:1023288309786.
[15]  Klimek, S.; Le?niewski, A. A two-parameter quantum deformation of the unit disc. J. Funct. Anal. 1993, 115, 1–23, doi:10.1006/jfan.1993.1078.
[16]  Hong, J.H.; Szymański, W. Quantum spheres and projective spaces as graph algebras. Comm. Math. Phys. 2002, 232, 157–188, doi:10.1007/s00220-002-0732-1.
[17]  Scott, P. The geometries of 3-manifolds. Bull. Lond. Math. Soc. 1983, 15, 401–487, doi:10.1112/blms/15.5.401.
[18]  Gracia-Bondia, J.M.; Várilly, J.C.; Figueroa, H. Elements of Noncommutative Geometry; Birkh?us?er: Boston, MA, USA, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133