All Title Author
Keywords Abstract

Chiral β-Amino Alcohols as Ligands for the Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation of N-Phosphinyl Ketimines

DOI: 10.3390/app2010001

Keywords: N-(diphenylphosphinyl)imine, asymmetric transfer hydrogenation, ruthenium catalyst, β-amino alcohol, isopropyl alcohol

Full-Text   Cite this paper   Add to My Lib


Some chiral β-amino alcohols have been evaluated as potential ligands for the ruthenium-catalyzed asymmetric transfer hydrogenation (ATH) of N-phosphinyl ketimines in isopropyl alcohol. The ruthenium complex prepared from [RuCl 2( p-cymene)] 2 and (1 S,2 R)-1-amino-2-indanol has shown to be an efficient catalyst for the ATH of several N-(diphenylphosphinyl)imines, affording the reduction products in very good isolated yields and enantiomeric excesses up to 82%. The inherent rigidity of the indane ring system present in the ligand seems to be very important to achieve good enantioselectivities.


[1]  Jacques, J.; Collet, A.; Wilen, S.H. Enantiomers, Racemates and Resolution; John Wiley & Sons: New York, NY, USA, 1981.
[2]  Juaristi, E.; Escalante, J.; León-Romo, J.L.; Reyes, A. Recent applications of α-phenylethylamine (α-PEA) in the preparation of enantiopure compounds. Part 1. Incorporation in chiral catalysts. Part 2. α-PEA and derivatives as resolving agents. Tetrahedron: Asymmetry 1998, 9, 715–740, doi:10.1016/S0957-4166(98)00058-5.
[3]  Fogassy, E.; Nógrádi, M.; Kozma, D.; Egri, G.; Pálovics, E.; Kiss, V. Optical resolution methods. Org. Biomol. Chem. 2006, 4, 3011–3030, doi:10.1039/b603058k.
[4]  Faigl, F.; Fogassy, E.; Nógrádi, M.; Pálovics, E.; Schindler, J. Strategies in optical resolution: A practical guide. Tetrahedron: Asymmetry 2008, 19, 519–536, doi:10.1016/j.tetasy.2008.02.004.
[5]  Nugent, T.C. Chiral Amine Synthesis. Methods, Developments and Applications; Wiley-VCH: Weinheim, Germany, 2010.
[6]  Whitesell, J.K. C2 Symmetry and asymmetric induction. Chem. Rev. 1989, 89, 1581–1590, doi:10.1021/cr00097a012.
[7]  Lucet, D.; Le Gall, T.; Mioskowski, C. The chemistry of vicinal diamines. Angew. Chem. Int. Ed. 1998, 37, 2580–2627, doi:10.1002/(SICI)1521-3773(19981016)37:19<2580::AID-ANIE2580>3.0.CO;2-L.
[8]  Waldmann, H. C2-symmetric amines as chiral auxiliaries. In Organic Synthesis Highlights II; Waldmann, H., Ed.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008.
[9]  Braese, S.; Baumann, T.; Dahmen, S.; Vogt, H. Enantioselective catalytic syntheses of α-branched chiral amines. Chem. Commun. 2007, 1881–1890.
[10]  Nugent, T.C.; El-Shazly, M. Chiral amine synthesis. Recent developments and trends for enamide reduction, reductive amination, and imine reduction. Adv. Synth. Catal. 2010, 352, 753–819, doi:10.1002/adsc.200900719.
[11]  Gladiali, S.; Alberico, E. Asymmetric transfer hydrogenation: Chiral ligands and applications. Chem. Soc. Rev. 2006, 35, 226–236, doi:10.1039/b513396c.
[12]  Noyori, R.; Hashiguchi, S. Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc. Chem. Res. 1997, 30, 97–102, doi:10.1021/ar9502341.
[13]  Palmer, M.J.; Wills, M. Asymmetric transfer hydrogenation of C=O and C=N bonds. Tetrahedron 1999, 10, 2045–2061, doi:10.1016/S0957-4166(99)00216-5.
[14]  Wills, M.; Palmer, M.; Smith, A.; Kenny, J.; Walsgrove, T. Recent developments in the area of asymmetric transfer hydrogenation. Molecules 2000, 5, 4–18.
[15]  Clapham, S.E.; Hadzovic, A.; Morris, R.H. Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord. Chem. Rev. 2004, 248, 2201–2237, doi:10.1016/j.ccr.2004.04.007.
[16]  Ikariya, T.; Blacker, A.J. Asymmetric transfer hydrogenation of ketones with bifunctional transition metal-based molecular catalysts. Acc. Chem. Res. 2007, 40, 1300–1308, doi:10.1021/ar700134q.
[17]  Wang, C.; Wu, X.; Xiao, J. Broader, greener, and more efficient: Recent advances in asymmetric transfer hydrogenation. Chem. Asian J. 2008, 3, 1750–1770, doi:10.1002/asia.200800196.
[18]  Wills, M. Imino reductions by transfer hydrogenation. In Modern Reduction Methods; Andersson, P.G., Munslow, I.J., Eds.; Wiley-VCH: Weinheim, Germany, 2008; pp. 271–296.
[19]  Malacea, R.; Poli, R.; Manoury, E. Asymmetric hydrosilylation, transfer hydrogenation, and hydrogenation of ketones catalyzed by iridium complexe. Coord. Chem. Rev. 2010, 254, 729–752, doi:10.1016/j.ccr.2009.09.033.
[20]  Spindler, F.; Blaser, H.-U. Enantioselective hydrogenation of C=N functions and enamines. Handb. Homog. Hydrog. 2007, 3, 1193–1214.
[21]  Fabrello, A.; Bachelier, A.; Urrutigo?ty, M.; Kalck, P. Mechanistic analysis of the transition metal-catalyzed hydrogenation of imines and functionalized enamines. Coord. Chem. Rev. 2010, 254, 273–287, doi:10.1016/j.ccr.2009.09.002.
[22]  Krzyzanowska, B.; Stec, W.J. A new approach to the synthesis of primary amines, isothiocyanates, and 1-aminoalkanephosphonates via N-phosphinyl aldoximes and ketoxime. Synthesis 1978, 521–524, doi:10.1055/s-1978-24795.
[23]  Andersson, P.G.; Guijarro, D.; Tanner, D. Preparation and use of aziridino alcohols as promoters for the enantioselective addition of dialkylzinc reagents to N-(diphenylphosphinoyl) imines. J. Org. Chem. 1997, 62, 7364–7375, doi:10.1021/jo970918h.
[24]  For a review on the use of N-phosphinoylimines in stereoselective synthesis, see: Weinreb, S.M.; Orr, R.K. N-Phosphinoylimines: An emerging class of reactive intermediates for stereoselective organic synthesis. Synthesis 2005, 1205–1227, doi:10.1055/s-2005-865315.
[25]  Vilaivan, T.; Bhanthumnavin, W.; Sritana-Anant, Y. Recent advances in catalytic asymmetric addition to imines and related C=N systems. Curr. Org. Chem. 2005, 9, 1315–1392, doi:10.2174/1385272054880214.
[26]  Spindler, F.; Blaser, H.-U. The highly enantioselective hydrogenation of N-diphenylphosphinylketimines with cationic Rh ferrocenyldiphosphine catalysts. Adv. Synth. Catal. 2001, 343, 68–70, doi:10.1002/1615-4169(20010129)343:1<68::AID-ADSC68>3.0.CO;2-G.
[27]  Wang, Y.-Q.; Zhou, Y.-G. Highly enantioselective Pd-catalyzed asymmetric hydrogenation of N-diphenylphosphinyl ketimines. Synlett 2006, 1189–1192.
[28]  Wang, Y.-Q.; Lu, S.-M.; Zhou, Y.-G. Highly enantioselective Pd-catalyzed asymmetric hydrogenation of activated imines. J. Org. Chem. 2007, 72, 3729–3734, doi:10.1021/jo0700878.
[29]  Lipshutz, B.H.; Shimizu, H. Copper(I)-catalyzed asymmetric hydrosilylations of imines at ambient temperatures. Angew. Chem. Int. Ed. 2004, 43, 2228–2230, doi:10.1002/anie.200353294.
[30]  Nolin, K.A.; Ahn, R.W.; Toste, F.D. Enantioselective reduction of imines catalyzed by a rhenium(V)-oxo complex. J. Am. Chem. Soc. 2005, 127, 12462–12463, doi:10.1021/ja050831a. 16144373
[31]  Park, B.-M.; Mun, S.; Yun, J. Zinc-catalyzed enantioselective hydrosilylation of imines. Adv. Synth. Catal. 2006, 348, 1029–1032, doi:10.1002/adsc.200606149.
[32]  Bandini, M.; Melucci, M.; Piccinelli, F.; Sinisi, R.; Tommasi, S.; Umani-Ronchi, A. New chiral diamino-bis(tert-thiophene): An effective ligand for Pd- and Zn-catalyzed asymmetric transformations. Chem. Commun. 2007, 4519–4521.
[33]  Nolin, K.A.; Ahn, R.W.; Kobayashi, Y.; Kennedy-Smith, J.J.; Toste, F.D. Enantioselective reduction of ketones and imines catalyzed by (CN-Box)ReV-oxo complexes. Chem. Eur. J. 2010, 16, 9555–9562, doi:10.1002/chem.201001164. 20623567
[34]  Graves, C.R.; Scheidt, K.A.; Nguyen, S.T. Enantioselective MSPV reduction of ketimines using 2-propanol and (BINOL)Al(III). Org. Lett. 2006, 8, 1229–1232, doi:10.1021/ol060110w. 16524310
[35]  Yamada, T.; Nagata, T.; Sugi, K.D.; Yorozu, K.; Ikeno, T.; Ohtsuka, Y.; Miyazaki, D.; Mukaiyama, T. Enantioselective borohydride reduction catalyzed by optically active cobalt complexes. Chem. Eur. J. 2003, 9, 4485–4509, doi:10.1002/chem.200304794. 14502636
[36]  Dai-Ho, G.; Mariano, P.S. Novel photochemical-diradical cyclization methods for protoberberine alkaloid synthesis. Preparation of (±)-xylopinine and (±)-stylopine. J. Org. Chem. 1987, 52, 704–706, doi:10.1021/jo00380a048.
[37]  Kwak, S.H.; Lee, S.A.; Lee, K.-I. Highly enantioselective Rh-catalyzed transfer hydrogenation of N-sulfonyl ketimines. Tetrahedron 2010, 21, 800–804, doi:10.1016/j.tetasy.2010.04.047.
[38]  Guijarro, D.; Pablo, O.; Yus, M. Ruthenium-catalysed asymmetric transfer hydrogenation of N-(tert-butanesulfinyl)imines. Tetrahedron Lett. 2009, 50, 5386–5388, doi:10.1016/j.tetlet.2009.07.044.
[39]  Guijarro, D.; Pablo, O.; Yus, M. Asymmetric synthesis of chiral primary amines by transfer hydrogenation of N-(tert-butanesulfinyl)ketimines. J. Org. Chem. 2010, 75, 5265–5270, doi:10.1021/jo101057s.
[40]  Guijarro, D.; Pablo, O.; Yus, M. Achiral β-amino alcohols as efficient ligands for the ruthenium-catalyzed asymmetric transfer hydrogenation of sulfinylimines. Tetrahedron Lett. 2011, 52, 789–791, doi:10.1016/j.tetlet.2010.12.031.
[41]  Pablo, O.; Guijarro, D.; Kovács, G.; Lledós, A.; Ujaque, G.; Yus, M. A versatile Ru catalyst for the asymmetric transfer hydrogenation of both aromatic and aliphatic sulfinylimines. Chem. Eur. J. 2012. in press.
[42]  Zhou, S.; Fleischer, S.; Junge, K.; Das, S.; Addis, D.; Beller, M. Enantioselective synthesis of amines: General, efficient iron-catalyzed asymmetric transfer hydrogenation of imines. Angew. Chem. Int. Ed. 2010, 49, 8121–8125, doi:10.1002/anie.201002456.
[43]  Zhang, G.; Wen, X.; Wang, Y.; Mo, W.; Ding, C. Sodium nitrite catalyzed aerobic oxidative deoximation under mild conditions. J. Org. Chem. 2011, 76, 4665–4668, doi:10.1021/jo102571e. 21528915
[44]  Masumoto, S.; Usuda, H.; Suzuki, M.; Kanai, M.; Shibasaki, M. Catalytic enantioselective strecker reaction of ketoimines. J. Amer. Chem. Soc. 2003, 125, 5634–5635, doi:10.1021/ja034980+.
[45]  Almansa, R.; Guijarro, D.; Yus, M. Enantioselective addition of dialkylzinc reagents to N-(diphenylphosphinoyl)imines catalyzed by β-aminoalcohols with the prolinol skeleton. Tetrahedron: Asymmetry 2007, 18, 2828–2840. (retention times of the two enantiomers of compounds 2a and 2b), doi:10.1016/j.tetasy.2007.11.006.
[46]  See reference 28 for the retention times of the two enantiomers of compound 2c.
[47]  Almansa, R.; Guijarro, D.; Yus, M. N-Benzylprolinol: An efficient catalyst for the enantioselective addition of dialkylzinc reagents to N-(diphenylphosphinoyl)imines. Tetrahedron: Asymmetry 2007, 18, 896–899, doi:10.1016/j.tetasy.2007.03.026.
[48]  Almansa, R.; Guijarro, D.; Yus, M. Enantioselective addition of dialkylzinc reagents to N-(diphenylphosphinoyl)imines catalyzed by β-amino alcohols with the prolinol skeleton. Tetrahedron: Asymmetry 2007, 18, 2828–2840, doi:10.1016/j.tetasy.2007.11.006.
[49]  Almansa, R.; Guijarro, D.; Yus, M. Microwave-accelerated enantioselective addition of dialkylzinc reagents to N-(diphenylphosphinoyl)imines catalyzed by β-amino alcohols with the prolinol skeleton. Tetrahedron: Asymmetry 2008, 19, 1376–1380, doi:10.1016/j.tetasy.2008.05.005.
[50]  For an excellent review on the use of cis-aminoindanol in asymmetric synthesis see: Gallou, I.; Senanayake, C.H. cis-1-Amino-2-indanol in drug design and applications to asymmetric processes. Chem. Rev. 2006, 106, 2843–2874.


comments powered by Disqus