All Title Author
Keywords Abstract

Atmosphere  2011 

Carbon Dioxide and Methane at a Desert Site—A Case Study at Railroad Valley Playa, Nevada, USA

DOI: 10.3390/atmos2040702

Keywords: CO2, CH4, playa

Full-Text   Cite this paper   Add to My Lib


Ground based in-situ measurements of carbon dioxide (CO 2) and methane (CH 4) at the dry lakebed at Railroad Valley (RRV) playa, Nevada, USA (38°30.234′ N, 115°41.604′ W, elevation 1437 m) were conducted over a five day period from 20–25 June 2010. The playa is a flat, desert site with virtually no vegetation, an overall size of 15 km × 15 km and is approximately 110 km south-west of the nearest city, Ely (elevation 1962 m, inhabitants 4000). The measurements were taken in support of the vicarious calibration experiment to validate column-averaged dry air mole fractions of CO 2 and CH 4 (X CO2 and X CH4) retrieved from the Greenhouse Gases Observing Satellite (GOSAT) which was launched in January 2009. This work reports on ground-based in-situ measurements of CO 2 and CH 4 from RRV playa and describes comparisons made between in-situ data and X CO2 and X CH4 from GOSAT.


[1]  Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007.
[2]  Lorius, C.; Jouzel, J.; Raynaud, D. The Ice Core Record: Past Archive of the Climate and Signpost to the Future. In Antarctica and Environmental Change; Oxford Science Publications: Oxford, UK, 1993; pp. 27–34.
[3]  Etheridge, D.M.; Steele, L.P.; Langenfelds, R.L.; Francey, R.J. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Arctic ice and firn. J. Geophys. Res. 1996, 101, 4115–4128.
[4]  WMO Secretariat. WMO Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2009, 2010. World Meteorological Organization Available online: (accessed on 23 September 2011).
[5]  Thompson, R.L.; Manning, A.C.; Gloor, E.; Schultz, U.; Seifert, T.; H?nsel, F.; Jordan, A.; Heinmann, M. In-situ measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany. Atmos. Meas. Tech. 2009, 2, 573–591.
[6]  Winderlich, J.; Chen, H.; Gerbig, C.; Seifert, T.; Kolle, O.; Laveri?, J.V.; Kaiser, C.; H?fer, A.; Heimann, M. Continuous low-maintenance CO2/CH4/H2O measurements at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia. Atmos. Meas. Tech. 2010, 3, 1113–1128.
[7]  Flannery, T. The Weather Makers: The History and Future Impact of Climate Change; Atlantic Monthly Press: New York, NY, USA, 2005.
[8]  Archer, D. The Long Thaw: How Humans Are Changing the Next 100,000 Years of Earth's Climate; Princeton University Press: Princeton, NJ, USA, 2008.
[9]  Kulawik, S.S.; Jones, D.B.A.; Nassar, R.; Irion, E.W.; Worden, J.R.; Bowman, K.W.; Machida, T.; Matsueda, H.; Sawa, Y.; Biraud, S.C.; et al. Characterization of Tropospheric emission spectrometer (TES) CO2 for carbon cycle science. Atmos. Chem. Phys. 2010, 10, 5601–5623.
[10]  Dlugokencky, E.J.; Houweling, S.; Bruhwiler, L.; Masarie, K.A.; Lang, P.M.; Miller, J.B.; Tans, P.P. Atmospheric methane levels off: Temporary pause or a new steady-state? Geophys. Res. Lett. 2003, 30, 3–6.
[11]  Bousquet, P.; Ciais, P.; Miller, J.B.; Dlugokencky, E.J.; Hauglustaine, D.A.; Prigent, C.; van der Werf, G.R.; Peylin, P.; Brunke, E.G.; Carouge, C.; et al. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 2006, 443, 439–443.
[12]  Rigby, M.; Prinn, R.G.; Fraser, P.B.; Simmonds, P.G.; Langenfels, R.L.; Huang, J.; Cunnold, D.M.; Steele, L.P.; Krummel, P.B.; Weiss, R.F.; et al. Renewed growth of atmospheric methane. Geophys. Res. Lett. 2008, 35, L22805.
[13]  Dlugokencky, E.J.; Bruhwiler, L.; White, J.W.C.; Emmons, L.K.; Novelli, P.C.; Montzka, S.A.; Masarie, K.A.; Lang, P.M.; Crotwell, A.M.; Miller, J.B.; Gatti, L.V.; et al. Observational constraints on recent increases in the atmospheric CH4 burden. Geophys. Res. Lett. 2009, 36, L18803.
[14]  Nikitin, A.V.; Lyulin, O.M.; Mikhailenko, S.N.; Perevalov, V.I.; Filippov, N.N.; Grigoriev, I.M.; Morino, I.; Yokota, T.; Kumazawa, R.; Watanabe, T. GOSAT-2009 methane spectral line list in the 5550–6236 cm?1 range. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2211–2224.
[15]  Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733.
[16]  Yokota, T.; Yoshida, Y.; Eguchi, N.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. Sci. Online Lett. Atmos. 2009, 5, 160–163.
[17]  Thome, K.J. Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method. Remote Sens. Environ. 2001, 78, 27–38.
[18]  Tonooka, H.; Palluconi, F.D.; Hook, S.J.; Matsunaga, T. Vicarious calibration of ASTER thermal infrared bands. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2733–2746.
[19]  Kuze, A.; O'Brien, D.M.; Taylor, T.M.; Day, O.; O'Dell, C.W.; Katakoka, F.; Yoshida, M.; Mitomi, Y.; Bruegee, C.J.; Pollock, H.; et al. Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa 2010. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4331–4380.
[20]  Crosson, E.R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide and water vapor. Appl. Phys. B 2008, 92, 403–408.
[21]  Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C.W.; Crosson, E.R.; van Pelt, A.D.; Steinbach, J.; Kolle, O.; Beck, V.; et al. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using cavity ring-down spectroscopy (CRDS) technique. Atmos. Meas. Tech. 2010, 3, 375–386.
[22]  Corbin, K.D.; Denning, A.S.; Lokupititya, E.Y.; Schuh, A.E.; Miles, N.L.; Davis, K.J.; Richardson, S.; Baker, I.T. Assessing the impact of crops on regional CO2 fluxes and atmospheric concentrations. Tellus B 2010, 62, 521–532.
[23]  Zhou, L.X.; Worthy, D.E.J.; Lang, P.M.; Ernst, M.K.; Zhang, X.C.; Wen, Y.P.; Li, J.L. Ten years of atmospheric methane observations at a high elevation site in Western China. Atmos. Environ. 2004, 38, 7041–7054.
[24]  Yoshida, Y.; Ota, Y.; Eguchi, N.; Kikuchi, N.; Nobuta, K.; Tran, H.; Morino, I.; Yokota, T. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse Gases Observing Satellite. Atmos. Meas. Tech. 2011, 4, 717–734.
[25]  O'Dell, C.W.; Connor, B.; B?sch, H.; O'Brien, D.; Frankenberg, C.; Castano, R.; Christi, M.; Crisp, D.; Eldering, A.; Fisher, B.; et al. The ACOS CO2 retrieval algorithm—Part 1: Description and validation against synthetic observations. Atmos. Meas. Tech. Discuss. 2011, 4, 6097–6158.
[26]  Butz, A.; Guerlet, S.; Hasekamp, O.; Schepers, D.; Galli, A.; Aben, I.; Frankenberg, C.; Hartmann, J.-M.; Tran, H.; Kuze, A.; et al. Toward accurate CO2 and CH4 observations from GOSAT. Geophys. Res. Lett. 2011, 38, L14812.
[27]  Bakwin, P.S.; Tans, P.P.; Hurst, D.F.; Zhao, C. Measurements of carbon dioxide on very tall towers: Results of the NOAA/CMDL program. Tellus Ser. B 1998, 50, 401–415.
[28]  Olsen, S.C.; Randerson, J.T. Differences between surface and column atmospheric CO2 and implications for carbon cycle research. J. Geophys. Res. 2004, 109, D02301.
[29]  Macatangay, R.; Warneke, T.; Gerbig, C.; K?rner, S.; Ahmadov, R.; Heimann, M.; Notholt, J. A framework for comparing remotely sensed and in-situ CO2 concentrations. Atmos. Chem. Phys. 2008, 8, 1549–1588.


comments powered by Disqus