All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

Synthesis, characterization, DNA interaction and antimicrobial screening of isatin-based polypyridyl mixed-ligand Cu(II) and Zn(II) complexes

Synthesis, Physico-Chemical and Antimicrobial Properties of Co(II), Ni(II), and Cu(II) Mixed-Ligand Complexes of Dimethylglyoxime

Microwave synthesis, spectral, thermal and antimicrobial activities of Co(II), Ni(II) and Cu(II) metal complexes with Schiff base ligand

Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) Mixed Ligand Complexes of Theophylline and Cyanate: Synthesis and Spectroscopic Characterization

COBALT(II), Ni(II), Cu(II), Zn(II), CD(II), Hg(II), U0(2)(VI) AND th(IV) COMPLEXES FROM ONNN SCHIFF BASE LIGAND

COBALT(II), Ni(II), Cu(II), Zn(II), CD(II), Hg(II), U0(2)(VI) AND th(IV) COMPLEXES FROM ONNN SCHIFF BASE LIGAND

Cu(II), Ni(II), and Zn(II) Complexes of Salan-Type Ligand Containing Ester Groups: Synthesis, Characterization, Electrochemical Properties, and In Vitro Biological Activities

SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL STUDIES ON MIXED LIGAND COMPLEXES OF CO (II), NI (II) AND CU (II) WITH ISOXAZOLE SCHIFF BASE AND 1, 10-PHENANTHROLINE/ 2, 2' -BIPYRIDINE LIGANDS Synthese, Charakterisierung und antimikrobiellen STUDIES ON MIXED Ligand-Komplexe von Co (II), Ni (II) und Cu (II) MIT Isoxazol SCHIFF BASE AND 1, 10-Phenanthrolin / 2, 2 '-Bipyridin-Liganden

Micellar effect on metal-ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) with citric acid

Micellar effect on metal-ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) with citric acid

More...

Synthesis, Characterization and Antimicrobial Screening Mixed-Ligand Cu(II) and Zn(II) Complexes; DNA Binding Studies on Cu(II) Complex

DOI: 10.4236/ojinm.2012.24007, PP. 59-64

Keywords: Mixed-Ligand Complexes, Thiourea, Thioacetamide, DNA Binding

Full-Text   Cite this paper   Add to My Lib

Abstract:

Several mixed ligand Cu(II), Zn(II) complexes using (benzylidenethiourea) (obtained by the condensation of benzaldehyde and thiourea) as the primary ligand and (acetamide or thioacetamide) as an additional ligand were synthesized and characterized analytically and spectroscopically, magnetic susceptibility and molar conductance measurements ,as well as by UV-Vis. and IR spectroscopy. The interaction of the complexes with calf thymus (CT)DNA was studied using absorption spectra, while the concentration of DNA in gel electrophoresis remained constant at 10 μl. They exhibit absorption hypochromicity increased during the binding of the complexes to calf thymus DNA. The complexes show enhanced antimicrobial activities complexes with the free ligand. A theoretical treatment of the formation of complexes in the gas phase was studied, this was done using the HYPERCHEM-6 program for the Molecular mechanics and Semi-empirical calculations.

References

[1]  C. B. Spillane, M. N. F. Dabo, N. C. F. Fletcher, J. L. Morgan, R. Keen, I. Haq and N. J. Buurma, “The Dichotomy in the DNA-Binding Behaviour of Ruthenium(II) Complexes Bearing Benzoxazole and Benzothiazole Groups,” Journal of Biological Inorganic Chemistry, Vol. 102, No. 4, 2008, p. 673.
[2]  M. S. S. Babu, P. G. Krishna, K. Hussain Reddy, G. H. Philip, “Synthesis, Characterization and DNA Cleavage Activity of Nickel(II) Adducts with Aromatic Heterocyclic Bases,” Journal of the Serbian Chemical Society, Vol. 75, No. 1, 2010, p. 61.
[3]  D. S. Sigma, A. Mazumder and D. M. Perrin, “Chemical Nucleases,” Chemical Reviews, Vol. 93, No. 6, 1993, pp. 2295-2316. doi:10.1021/cr00022a011
[4]  T. Ghosh, B. G. Maiya and A. Samanta, “Mixed-Ligand Complexes of Ruthenium(II) Containing New Photoactive or Electroactive Ligands: Synthesis, Spectral Characterization and DNA Interactions,” Journal of Biological Inorganic Chemistry, Vol. 10, No. 5, 2005, pp. 496-508. doi:10.1007/s00775-005-0660-6
[5]  N. J. Turro, J. K. Barton and D. A. Tomalia, “Molecular Recognition and Chemistry in Restricted Reaction Spaces. Photophysics and Photoinduced Electron Transfer on the Surfaces of Micelles, Dendrimers, and DNA,” Accounts of Chemical Research, Vol. 24, No. 11, 1991, pp. 332340. doi:10.1021/ar00011a003
[6]  F. Q. Liu, Q. X. Wang, K. Jiao, F. F. Jian, J. Y. Liu and R. X. Li, “Synthesis, Crystal Structure, and DNA-Binding Properties of a New Copper (II) Complex Containing Mixed-Ligands of 2,2’-Bipyridine and p-Methylbenzoate,” Inorganica Chimica Acta, Vol. 395, No. 5, 2006, pp. 1524-1530. doi:10.1016/j.ica.2005.12.035
[7]  T. F. Tullis, “Metal-DNA Chemistry,” ACS Symposium Series No. 402, ACS, Washington DC, 10 August 1989.
[8]  J. K. Barton, “Metals and DNA: Molecular Left-Handed Complements,” Science, Vol. 233, No. 4765, 1986, p. 727.
[9]  S. P. Singh, S. K. Shukla and L. P. Awasthi, “Synthesis of Some 3-(4'-Nitrobenzoylhydrazone)-2-indolinones as Potential Antiviral Agents,” Current Science, Vol. 52, 1983, p. 766.
[10]  S. Arounaguiri and B. G. Maiya, “Electro-Photo Switch” and “Molecular Light Switch” Devices Based on Ruthenium(II) Complexes of Modified Dipyridophenazine Ligands:? Modulation of the Photochemical Function through Ligand Design,” Inorganic Chemistry, Vol. 38, No. 5, 1999, pp. 842-843. doi:10.1021/ic981109z
[11]  R. Pulimamidi, R. Nomula and R. Karnativ, “The Effect of Oven-Heat Flux on Powder-Coating Issues of Sheet Molding Compound Panels,” Industrial & Engineering Chemistry Research, Vol. 48, No. 3, 2009, pp. 1638-1649. doi:10.1021/ie801130g
[12]  M. J. M. Campbell, D. W. Card and R. Grzeskowiak, “Cobalt(II) and Nickel(II) Halide Complexes of 2-Aminobenzothiazole,” Inorganic and Nuclear Chemistry Letters, Vol. 5, No. 1, 1969, pp. 39-43. doi:10.1016/0020-1650(69)80234-5
[13]  D. D. Perrin, W. L. F. Armarego, D. R. Perrin, “Purification of Laboratory Chemicals,” 2nd Edition, Pergamone Press, New York, 1980.
[14]  A. Quiroga, J. Perez, E. Montero, et al., “Palladated and Platinated Complexes Derived from Phenylacetaldehyde Thiosemicarbazone with Cytotoxic Activity in cis-DDP Resistant Tumor Cells. Formation of DNA Interstrand Cross-Links by These Complexes,” Journal of Inorganic Biochemistry, Vol. 70, No. 2, 1998, pp. 117-123. doi:10.1016/S0162-0134(98)10007-7
[15]  J. A. Marmur, “A Procedure for the Isolation of Deoxyribonucleic Acid from Micro-Organisms,” Journal of Molecular Biology, Vol. 3, No. 2, 1961, pp. 208-218. doi:10.1016/S0022-2836(61)80047-8
[16]  N. Ramman, Y. P. Raja and A. Kulandaisory, “Synthesis and Characterization of Cu(II) , Ni(II), Mn(II), Zn(II) and VO(II) Schiff Base Complexes Derived from Acetoacetalnilililde and O-Phenylenediamine,” India Academy of Science, Vol. 113, No. 3, 2001, pp. 183-189.
[17]  D. H. Williamsand and I. Fleming, “Spectroscopic Methods in Organic Chemistry,” Mc. Graw Hill, London. 1989.
[18]  O. Bostoup and C. K. J?rgensen, “The Decrease of FkIntegrals, Tetragonal Perturbations, and Effects of Average Environment in the Reflection Spectra of Nickel(II) Complexes,” Acta Chemica Scandinavica, Vol. 11, 1957, pp. 1223-1231. doi:10.3891/acta.chem.scand.11-1223
[19]  A. B. P. Lever, “The Electronic Spectra of Tetragonal Metal Complexes Analysis and Significance,” Coordination Chemistry Reviews, Vol. 3, No. 2, 1968, pp. 119-140. doi:10.1016/S0010-8545(00)80107-1
[20]  M. M. Mostava, A. M. Shallaby and A. A. El. Asmy, “Transition Metal Complexes of 4-Phenylthiosemicarbazide,” Journal of Inorganic and Nuclear Chemistry, Vol. 43, No. 11, 1981, pp. 2992-2995.
[21]  K. Nakamoto, “Infrared and Raman Spectra of Inorganic and Coordination Compoundes,” Wiley-Interscience, New York, 1977.
[22]  M. A. Pujar, B. S. Hadimani, S. Meonakumari, S. M. Gaddad and Y. F. Neelgund, “Azo and Schiff Bases and Their Metal Complexes as Antibacterial Compounds,” Current Science, Vol. 55, No. 7, 1986, p. 353.
[23]  A. B. R. Lever, “Crystal Field Spectra: Inorganic Electronic Spectroscopy,” Elsevier, Amsterdam, 1968, pp. 249360.
[24]  P. Fleteher, “Practical Methods of Optimization,” Wiley, New York, 1990.
[25]  F. A. Cotton and G. Wilkinson, “Advanced Inorganic Chemistry,” 5th Edition, Wiley, New York, 1988.
[26]  Y. Anjaneyalu and R. P. Rao, “Preparation, Characterization and Antimicrobial Activity Studies on Some Ternary Complexes of Cu(II) with Acetyl Acetone and Various Salicylic Acids,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, Vol. 16, No. 3, 1986, pp. 257-272.
[27]  L. Mishra, A. K. Pandey and U. C. Agarwala, “Co(II), Ni(II), Cu(ll) and Zn(II) Complexes of Benzimidazole Derivatives and Dimeric Adduct of Co(II) with 2-(-thiomethyl)-2’-benzimidazolyl) Benzimidazole,” Indian Journal of Chemistry, Vol. 32A, 1993, p. 446.

Full-Text

comments powered by Disqus