All Title Author
Keywords Abstract

PLOS ONE  2011 

Membrane-Type-3 Matrix Metalloproteinase (MT3-MMP) Functions as a Matrix Composition-Dependent Effector of Melanoma Cell Invasion

DOI: 10.1371/journal.pone.0028325

Full-Text   Cite this paper   Add to My Lib

Abstract:

In primary human melanoma, the membrane-type matrix metalloproteinase, MT3-MMP, is overexpressed in the most aggressive nodular-type tumors. Unlike MT1-MMP and MT2-MMP, which promote cell invasion through basement membranes and collagen type I-rich tissues, the function of MT3-MMP in tumor progression remains unclear. Here, we demonstrate that MT3-MMP inhibits MT1-MMP-driven melanoma cell invasion in three-dimensional collagen, while yielding an altered, yet MT1-MMP-dependent, form of expansive growth behavior that phenocopies the formation of nodular cell colonies. In melanoma cell lines originating from advanced primary or metastatic lesions, endogenous MT3-MMP expression was associated with limited collagen-invasive potential. In the cell lines with highest MT3-MMP expression relative to MT1-MMP, collagen-invasive activity was increased following stable MT3-MMP gene silencing. Consistently, MT3-MMP overexpression in cells derived from less advanced superficially spreading melanoma lesions, or in the MT3-MMP knockdown cells, reduced MT1-MMP-dependent collagen invasion. Rather than altering MT1-MMP transcription, MT3-MMP interacted with MT1-MMP in membrane complexes and reduced its cell surface expression. By contrast, as a potent fibrinolytic enzyme, MT3-MMP induced efficient invasion of the cells in fibrin, a provisional matrix component frequently found at tumor-host tissue interfaces and perivascular spaces of melanoma. Since MT3-MMP was significantly upregulated in biopsies of human melanoma metastases, these results identify MT3-MMP as a matrix-dependent modifier of the invasive tumor cell functions during melanoma progression.

References

[1]  Nguyen DX, Bos PD, Massague J (2009) Metastasis: From dissemination to organ-specific colonization. Nat Rev Cancer 9(4): 274–284.
[2]  Hanahan D, Weinberg RA (2011) Hallmarks of cancer: The next generation. Cell 144(5): 646–674.
[3]  Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33(1): 49–54.
[4]  Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, et al. (2008) The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics 1: 13.
[5]  Mimori K, Fukagawa T, Kosaka Y, Ishikawa K, Iwatsuki M, et al. (2008) A large-scale study of MT1-MMP as a marker for isolated tumor cells in peripheral blood and bone marrow in gastric cancer cases. Ann Surg Oncol 15(10): 2934–42.
[6]  Zhai Y, Hotary KB, Nan B, Bosch FX, Munoz N, et al. (2005) Expression of membrane type 1 matrix metalloproteinase is associated with cervical carcinoma progression and invasion. Cancer Res 65(15): 6543–6550.
[7]  Jiang WG, Davies G, Martin TA, Parr C, Watkins G, et al. (2006) Expression of membrane type-1 matrix metalloproteinase, MT1-MMP in human breast cancer and its impact on invasiveness of breast cancer cells. Int J Mol Med 17(4): 583–590.
[8]  Uchibori M, Nishida Y, Nagasaka T, Yamada Y, Nakanishi K, et al. (2006) Increased expression of membrane-type matrix metalloproteinase-1 is correlated with poor prognosis in patients with osteosarcoma. Int J Oncol 28(1): 33–42.
[9]  Sugiyama N, Varjosalo M, Meller P, Lohi J, Hyytiainen M, et al. (2010) Fibroblast growth factor receptor 4 regulates tumor invasion by coupling fibroblast growth factor signaling to extracellular matrix degradation. Cancer Res 70(20): 7851–7861.
[10]  Ota I, Li XY, Hu Y, Weiss SJ (2009) Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc Natl Acad Sci U S A 106(48): 20318–20323.
[11]  Pagenstecher A, Wussler EM, Opdenakker G, Volk B, Campbell IL (2001) Distinct expression patterns and levels of enzymatic activity of matrix metalloproteinases and their inhibitors in primary brain tumors. J Neuropathol Exp Neurol 60(6): 598–612.
[12]  Sohail A, Sun Q, Zhao H, Bernardo MM, Cho JA, et al. (2008) MT4-(MMP17) and MT6-MMP (MMP25), A unique set of membrane-anchored matrix metalloproteinases: Properties and expression in cancer. Cancer Metastasis Rev 27(2): 289–302.
[13]  Llano E, Pendas AM, Freije JP, Nakano A, Knauper V, et al. (1999) Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res 59(11): 2570–2576.
[14]  Rizki A, Weaver VM, Lee SY, Rozenberg GI, Chin K, et al. (2008) A human breast cell model of preinvasive to invasive transition. Cancer Res 68(5): 1378–1387.
[15]  Sabeh F, Ota I, Holmbeck K, Birkedal-Hansen H, Soloway P, et al. (2004) Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol 167(4): 769–781.
[16]  Shimada T, Nakamura H, Ohuchi E, Fujii Y, Murakami Y, et al. (1999) Characterization of a truncated recombinant form of human membrane type 3 matrix metalloproteinase. Eur J Biochem 262(3): 907–914.
[17]  Li XY, Ota I, Yana I, Sabeh F, Weiss SJ (2008) Molecular dissection of the structural machinery underlying the tissue-invasive activity of membrane type-1 matrix metalloproteinase. Mol Biol Cell 19(8): 3221–3233.
[18]  Hotary KB, Yana I, Sabeh F, Li XY, Holmbeck K, et al. (2002) Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and -independent processes. J Exp Med 195(3): 295–308.
[19]  Arai I, Nagano H, Kondo M, Yamamoto H, Hiraoka N, et al. (2007) Overexpression of MT3-MMP in hepatocellular carcinoma correlates with capsular invasion. Hepatogastroenterology 54(73): 167–171.
[20]  Lowy AM, Clements WM, Bishop J, Kong L, Bonney T, et al. (2006) Beta-Catenin/Wnt signaling regulates expression of the membrane type 3 matrix metalloproteinase in gastric cancer. Cancer Res 66(9): 4734–4741.
[21]  Takino T, Sato H, Shinagawa A, Seiki M (1995) Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J Biol Chem 270(39): 23013–23020.
[22]  Morris MJ, Basu S (2009) An unusually stable G-quadruplex within the 5′-UTR of the MT3 matrix metalloproteinase mRNA represses translation in eukaryotic cells. Biochemistry 48(23): 5313–5319.
[23]  Balch CM, Soong SJ, Atkins MB, Buzaid AC, Cascinelli N, et al. (2004) An evidence-based staging system for cutaneous melanoma. CA Cancer J Clin 54(3): 131–49.
[24]  Jaeger J, Koczan D, Thiesen HJ, Ibrahim SM, Gross G, et al. (2007) Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clin Cancer Res 13(3): 806–815.
[25]  Ohnishi Y, Tajima S, Ishibashi A (2001) Coordinate expression of membrane type-matrix metalloproteinases-2 and 3 (MT2-MMP and MT3-MMP) and matrix metalloproteinase-2 (MMP-2) in primary and metastatic melanoma cells. Eur J Dermatol 11(5): 420–423.
[26]  Poetsch M, Dittberner T, Woenckhaus C (2003) Can different genetic changes characterize histogenetic subtypes and biologic behavior in sporadic malignant melanoma of the skin? Cell Mol Life Sci 60(9): 1923–1932.
[27]  Hofmann UB, Westphal JR, Zendman AJ, Becker JC, Ruiter DJ, et al. (2000) Expression and activation of matrix metalloproteinase-2 (MMP-2) and its co-localization with membrane-type 1 matrix metalloproteinase (MT1-MMP) correlate with melanoma progression. J Pathol 191(3): 245–256.
[28]  Kilpinen S, Autio R, Ojala K, Iljin K, Bucher E, et al. (2008) Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol 9(9): R139.
[29]  Airola K, Karonen T, Vaalamo M, Lehti K, Lohi J, et al. (1999) Expression of collagenases-1 and -3 and their inhibitors TIMP-1 and -3 correlates with the level of invasion in malignant melanomas. Br J Cancer 80(5–6): 733–743.
[30]  Blackburn JS, Liu I, Coon CI, Brinckerhoff CE (2009) A matrix metalloproteinase-1/protease activated receptor-1 signaling axis promotes melanoma invasion and metastasis. Oncogene 28(48): 4237–4248.
[31]  Masters JRW, Palsson BO (1998) Human Cell Culture, Vol I. The Netherlands: 320 p.
[32]  Wojtukiewicz MZ, Zacharski LR, Memoli VA, Kisiel W, Kudryk BJ, et al. (1990) Malignant melanoma. Interaction with coagulation and fibrinolysis pathways in situ. Am J Clin Pathol 93(4): 516–521.
[33]  Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ (2000) Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol 149(6): 1309–1323.
[34]  Kang T, Yi J, Yang W, Wang X, Jiang A, et al. (2000) Functional characterization of MT3-MMP in transfected MDCK cells: Progelatinase A activation and tubulogenesis in 3-D collagen lattice. FASEB J 14(15): 2559–2568.
[35]  Lehti K, Lohi J, Valtanen H, Keski-Oja J (1998) Proteolytic processing of membrane-type-1 matrix metalloproteinase is associated with gelatinase A activation at the cell surface. Biochem J 334(Pt 2): 345–353.
[36]  Lehti K, Lohi J, Juntunen MM, Pei D, Keski-Oja J (2002) Oligomerization through hemopexin and cytoplasmic domains regulates the activity and turnover of membrane-type 1 matrix metalloproteinase. J Biol Chem 277(10): 8440–8448.
[37]  Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW, et al. (2003) Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114(1): 33–45.
[38]  Moss NM, Liu Y, Johnson JJ, Debiase P, Jones J, et al. (2009) Epidermal growth factor receptor-mediated membrane type 1 matrix metalloproteinase endocytosis regulates the transition between invasive versus expansive growth of ovarian carcinoma cells in three-dimensional collagen. Mol Cancer Res 7(6): 809–820.
[39]  Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, et al. (2003) Compensation mechanism in tumor cell migration: Mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160(2): 267–277.
[40]  Shi J, Son MY, Yamada S, Szabova L, Kahan S, et al. (2008) Membrane-type MMPs enable extracellular matrix permissiveness and mesenchymal cell proliferation during embryogenesis. Dev Biol 313(1): 196–209.
[41]  Iida J, Pei D, Kang T, Simpson MA, Herlyn M, et al. (2001) Melanoma chondroitin sulfate proteoglycan regulates matrix metalloproteinase-dependent human melanoma invasion into type I collagen. J Biol Chem 276(22): 18786–18794.
[42]  Tochowicz A, Goettig P, Evans R, Visse R, Shitomi Y, et al. (2011) The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain: Crystal structure and biological functions. J Biol Chem 286(9): 7587–7600.
[43]  Itoh Y, Seiki M (2006) MT1-MMP: A potent modifier of pericellular microenvironment. J Cell Physiol 206(1): 1–8.
[44]  Vuoriluoto K, Hognas G, Meller P, Lehti K, Ivaska J (2011) Syndecan-1 and -4 differentially regulate oncogenic K-ras dependent cell invasion into collagen through alpha2beta1 integrin and MT1-MMP. Matrix Biol 30(3): 207–217.
[45]  Bardos H, Molnar P, Csecsei G, Adany R (1996) Fibrin deposition in primary and metastatic human brain tumours. Blood Coagul Fibrinolysis 7(5): 536–548.
[46]  Costantini V, Zacharski LR (1992) The role of fibrin in tumor metastasis. Cancer Metastasis Rev 11(3–4): 283–290.
[47]  Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, et al. (2004) ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia 6(1): 1–6.
[48]  Casley-Smith JR, Florey HW (1961) The structure of normal small lymphatics. Q J Exp Physiol Cogn Med Sci 46: 101–106.
[49]  Pflicke H, Sixt M (2009) Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med 206(13): 2925–2935.
[50]  Palumbo JS, Kombrinck KW, Drew AF, Grimes TS, Kiser JH, et al. (2000) Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 96(10): 3302–3309.
[51]  Palumbo JS, Potter JM, Kaplan LS, Talmage K, Jackson DG, et al. (2002) Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Res 62(23): 6966–6972.
[52]  Giampieri S, Manning C, Hooper S, Jones L, Hill CS, et al. (2009) Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11(11): 1287–1296.
[53]  Ferraro GB, Morrison CJ, Overall CM, Strittmatter SM, Fournier AE (2011) Membrane-type matrix metalloproteinase-3 regulates neuronal responsiveness to myelin through nogo-66 receptor 1 cleavage. J Biol Chem 286(36): 31418–31424.
[54]  Herlyn M, Thurin J, Balaban G, Bennicelli JL, Herlyn D, et al. (1985) Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res 45(11 Pt 2): 5670–5676.
[55]  MacDougall JR, Bani MR, Lin Y, Muschel RJ, Kerbel RS (1999) ‘Proteolytic switching’: Opposite patterns of regulation of gelatinase B and its inhibitor TIMP-1 during human melanoma progression and consequences of gelatinase B overexpression. Br J Cancer 80(3–4): 504–512.
[56]  Illman SA, Lehti K, Keski-Oja J, Lohi J (2006) Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells. J Cell Sci 119(Pt 18): 3856–3865.
[57]  Tatti O, Vehvilainen P, Lehti K, Keski-Oja J (2008) MT1-MMP releases latent TGF-beta1 from endothelial cell extracellular matrix via proteolytic processing of LTBP-1. Exp Cell Res 314(13): 2501–2514.
[58]  Lehti K, Valtanen H, Wickstrom SA, Lohi J, Keski-Oja J (2000) Regulation of membrane-type-1 matrix metalloproteinase activity by its cytoplasmic domain. J Biol Chem 275(20): 15006–15013.

Full-Text

comments powered by Disqus