All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

Intergenomic Rearrangements after Polyploidization of Kengyilia thoroldiana (Poaceae: Triticeae) Affected by Environmental Factors

Phylogenetic analysis of Hystrix and its related genera (Poaceae:Triticeae) based on the sequences of the gene encoding 3-phosphoglycerate kinase
猬草及其近缘属植物单拷贝核Pgk1基因序列的系统发育分析

Occurrence of diploid and polyploid microspores in Sorghum bicolor (Poaceae) is the result of cytomixis

A taxonomical study on the genus Kengyilia Yen et J. L. Yang
以礼草属的分类研究

Biosystematic studies of Kengyilia melanthera and K. kokonorica(Poaceae: Triticeae)
青海仲彬草和黑药仲彬草的生物系统学研究

Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise

Nuclear and plastid haplotypes suggest rapid diploid and polyploid speciation in the N Hemisphere Achillea millefolium complex (Asteraceae)

PCR-RFLP Analysis on Roegneria, Elymus, Hystrix and Kengyilia in Triticeae (Poaceae)
小麦族鹅观草属、披碱草属、猬草属和仲彬草属细胞质基因组PCR-RFLP分析

QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species

Geographical distribution of Kengyilia Yen et J. L. Yang (Poaceae)
以礼草属的地理分布

More...
PLOS ONE  2012 

Evolutionary Dynamics of the Pgk1 Gene in the Polyploid Genus Kengyilia (Triticeae: Poaceae) and Its Diploid Relatives

DOI: 10.1371/journal.pone.0031122

Full-Text   Cite this paper   Add to My Lib

Abstract:

The level and pattern of nucleotide variation in duplicate gene provide important information on the evolutionary history of polyploids and divergent process between homoeologous loci within lineages. Kengyilia is a group of allohexaploid species with the StYP genomic constitutions in the wheat tribe. To investigate the evolutionary dynamics of the Pgk1 gene in Kengyilia and its diploid relatives, three copies of Pgk1 homoeologues were isolated from all sampled hexaploid Kengyilia species and analyzed with the Pgk1 sequences from 47 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) Kengyilia species from the Central Asia and the Qinghai-Tibetan plateau have independent origins with geographically differentiated P genome donors and diverged levels of nucleotide diversity at Pgk1 locus; (2) a relatively long-time sweep event has allowed the Pgk1 gene within Agropyron to adapt to cold climate triggered by the recent uplifts of the Qinghai-Tibetan Plateau; (3) sweep event and population expansion might result in the difference in the dN/dS value of the Pgk1 gene in allopatric Agropyron populations, and this difference may be genetically transmitted to Kengyilia lineages via independent polyploidization events; (4) an 83 bp MITE element insertion has shaped the Pgk1 loci in the P genome lineage with different geographical regions; (5) the St and P genomes in Kengyilia were donated by Pseudoroegneria and Agropyron, respectively, and the Y genome is closely related to the Xp genome of Peridictyon sanctum. The interplay of evolutionary forces involving diverged natural selection, population expansion, and transposable events in geographically differentiated P genome donors could attribute to geographical differentiation of Kengyilia species via independent origins.

References

[1]  Hovav R, Udall JA, Chaudhary B, Rapp R, Flagel L, et al. (2008) Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant. Proc Natl Acad Sci U S A 105: 6191–6195.
[2]  Soltis DE, Soltis PS, Tate JA (2003) Advances in the study of polyploidy since Plant Speciation. New Phytol 161: 173–191.
[3]  Small RL, Wendel JF (2002) Differential evolutionary dynamics of duplicated paralogous Adh loci in allotetraploid cotton (Gossypium). Mol Biol Evol 19: 597–607.
[4]  Aagaard JE, Willis JH, Phillips PC (2006) Relaxed selection among duplicate floral regulatory genes in Lamiales. J Mol Evol 63: 493–503.
[5]  Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. Proc Natl Acad Sci U S A 100: 15682–15687.
[6]  Guo WZ, Cai CP, Wang CB, Zhao L, Wang L, et al. (2008) A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics 9: 314.
[7]  Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, et al. (2009) Evolutionary history of GS3, a gene conferring grain size in rice. Genetics 182: 1323–34.
[8]  Fan CZ, Xiang QYJ, Remington DL, Purugganan MD, Wiegmann BM (2007) Evolutionary patterns in the antR-Cor gene in the dwarf dogwood complex (Cornus, Cornaceae). Genetica 130: 19–34.
[9]  Slotte T, Huang HR, Lascoux M, Ceplitis A (2008) Polyploid speciation did not confer instant reproductive isolation in Capsella. Mol Biol Evol 25: 1472–1481.
[10]  Gong PC, Bao Y (2008) Nucleotide diversity of the homoeologous adh 1 loci in the American allotetraploid Oryza species. Plant Syst Evol 276: 243–253.
[11]  Salmon A, Flagel L, Bao Y, Udal JA, Wendel JF (2010) Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol 186: 123–134.
[12]  Takuno S, Nishio T, Satta Y, Innan H (2008) Preservation of a pseudogene by gene conversion and diversifying selection. Genetics 180: 517–531.
[13]  Sun GL, Daley T, Ni Y (2007) Molecular evolution and genome divergence at RPB2 gene of the St and H genome in Elymus species. Plant Mol Biol 64: 645–655.
[14]  Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, et al. (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24: 1506–1517.
[15]  Yang JL, Yen C, Baum BR (1992) Kengyilia: synopsis and key to species. Hereditas 116: 25–28.
[16]  Jensen KB (1996) Genome analysis of Eurasisan Elymus thoroldianus, E. melantherus, and E. kokonoricus (Poaceae: Triticeae). Int J Plant Sci 157: 136–141.
[17]  Zhou YH (1994) Study on karyotypes of 5 species of Kengyilia. Guihaia 14: 163–169.
[18]  Zhang XQ, Yang JL, Yen C, Zheng YL, Zhou YH (2000) Cytogenetic and systematic analysis of Kengyilia gobicola, K. zhaosuensis and K. batalinii var. nana (Poaceae). Genet Resour Crop Evol 47: 451–454.
[19]  Yen C, Yang JL, Baum BR (2006) Biosystematics of Triticeae. Volume 3. Chinese Agriculture Press, Beijing.
[20]  L?ve A (1984) Conspectuse of Triticeae. Feddes Rep 95: 425–524.
[21]  Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP, editor. Gene Manipulation in Plant Improvement. pp. 209–279. Plenem Press, New York.
[22]  Mason-Gamer RJ, Burns MM, Naum M (2005) Polyploidy, introgression, and complex phylogenetic patterns within Elymus. Czech J Genet Plant Breed 41: 21–26.
[23]  Liu Q, Ge S, Tang H, Zhang X, Zhu G, et al. (2006) Phylogenetic relationships in Elymus (Poaceae, Triticeae) based on the nuclear ribosomal transcribed spacer and chloroplast trnL-F sequences. New Phytol 170: 411–420.
[24]  Sun GL, Ni Y, Daley T (2008) Molecular phylogeny of RPB2 gene reveals multiple origin,geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species. Mol Phylogenet Evol 46: 897–907.
[25]  Zhou YH, Zheng YL, Yang JL, Yen C, Jia JZ (2000) Relationships among Kengyilia species assessed by RAPD markers. Acta Phytotaxon Sin 38: 515–521.
[26]  Zhang L, Zheng YL, Wei YM, Liu SG, Zhou YH (2005) The genetic diversity and similarities among Kengyilia species based on random amplified microsatellite polymorphism. Genet Resour Crop Evol 52: 1011–1017.
[27]  Zeng J, Cao G, Liu J, Zhang HQ, Zhou YH (2008) C-banding analysis of eight species of Kengyilia (Poaceae: Triticeae). J Appl Genet 49: 11–21.
[28]  Zeng J, Zhang L, Fan X, Zhang HQ, Yang RW, et al. (2008) Phylogenetic analysis of Kengyilia species based on nuclear ribosomal DNA internal transcribed spacer sequences. Biol Plantarum 52: 231–236.
[29]  Huang SX, Sirikhachornkit A, Faris JD, Su XJ, Gill BS, et al. (2002) Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Mol Biol 48: 805–820.
[30]  Huang SX, Sirikhachornkit A, Su XJ, Faris J, Gill B, et al. (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci U S A 12: 8133–8138.
[31]  Kilian B, ?zkan H, Deusch O, Effgen S, Brandolini A, et al. (2007) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol 24: 217–227.
[32]  Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11–15.
[33]  Thompson JD, Plewniak F, Poch O (1999) A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Res 27: 2682–2690.
[34]  Tajima F (1989) Statistical method for testing the neutral mutation of hypothesis by DNA polymorphism. Genetics 123: 585–595.
[35]  Watterson GA (1975) On the number of segregation sites in genetical models without recombination. Theor Popul Biol 7: 256–276.
[36]  Wakeley J, Hey J (1997) Estimating ancestral population parameters. Genetics 145: 847–855.
[37]  Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133: 693–709.
[38]  Hudson RR (1990) Gene genealogies and the coalescent process. In: Futuyma D, Antonovics J, editors. Oxford Surveys in Evolutionary Biology. pp. 1–44. Oxford University Press, New York.
[39]  Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
[40]  Kosakovsky Pond SL, Frost SDW (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21: 2531–2533.
[41]  Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2005) DNA sequence polymorphism, version 4.10.4. DNAsp4 computer software. Barcelona Univ. Barcelona, Spain.
[42]  Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W.H. Freeman, New York.
[43]  Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.
[44]  Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.
[45]  Huelsenbeck JP, Ronquist FR (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.
[46]  Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214.
[47]  Rambaut A, Drummond AJ (2007) Tracer v1.4: MCMC trace analyses tool. Available: http://beast.bio.ed.ac.uk/Tracer. Accessed 2012 Jan 4.
[48]  Noor MAF, Feder JL (2006) Speciation genetics: evolving approaches. Nat Rev Genet 7: 851–861.
[49]  Wang RR-C, Bothmer RV, Dvorak J, Fedak G, Linde-Laursen I, et al. (1994) Genome symbols in the Triticeae (Poaceae). In: Wang RR-C, Jensen KB, Jaussi C, editors. Proc 2nd Intern. pp. 29–34. Triticeae Symp, Logan, Utah, U S A.
[50]  Lu BR, Bothmer von R (1990) Genomic constitution of Elymus parviglumis and E. pseudonutans, Triticeae (Poaceae). Hereditas 113: 109–119.
[51]  Sun GL, Komatsuda T (2010) Origin of the Y genome in Elymus and its relationship to other genomes in Triticeae based on evidence from elongation factor G (EF-G) gene sequences. Mol Phylogenet Evol 56: 727–733.
[52]  Torabinejad J, Mueller RJ (1993) Genome Constitution of the Australian hexaploid grass Elymus scabrus (Poaceae, Triticeae). Genome 36: 147–151.
[53]  Symonds VV, Soltis PS, Soltis DE (2010) Dynamics of polyploid formation in Tragopogon (Asteraceae): recurrent formation, gene flow, and population structure. Evolution 64: 1984–2003.
[54]  Chapman BA, Bowers JE, Feltus FA, Paterson AH (2006) Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiospermgenome duplication. Proc Natl Acad Sci U S A 103: 2730–2735.
[55]  Fraser HB, Moses AM, Schadt EE (2010) Evidence for widespread adaptive evolution of gene expression in budding yeast. Proc Natl Acad Sci U S A 107: 2977–82.
[56]  Palmé AE, Wright M, Savolainen O (2008) Patterns of divergence among conifer ESTs and polymorphism in Pinus sylvestris identify putative selective sweeps. Mol Biol Evol 25: 2567–2577.
[57]  Hashimoto M, Komatsu S (2007) Proteomics analysis of rice seedlings during cold stress. Proteomics 7: 1293–1302.
[58]  Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405: 907–913.
[59]  Zheng BX, Xu QQ, Shen YP (2002) The relationship between climate change and Quaternary glacial cycles on the Qinghai-Tibetan Plateau: review and speculation. Quatern Int 97–98: 93–101.
[60]  Rokas A, Atkinson RJ, Brown GS, West SA, Stone GN (2001) Understanding patterns of genetic diversity in the oak gallwasp Biorhiza pallida: demographic history or a Wolbachia selective sweep? Heredity 87: 294–304.
[61]  Otto SP (2000) Polyploid incidence and evolution. Annu Rev Genet 34: 401–37.
[62]  Hershberg R, Petrov DA (2008) Selection on codon bias. Annu Rev Genet 42: 287–99.

Full-Text

comments powered by Disqus