All Title Author
Keywords Abstract

PLOS ONE  2012 

The Impact of Adherence to Screening Guidelines and of Diabetes Clinics Referral on Morbidity and Mortality in Diabetes

DOI: 10.1371/journal.pone.0033839

Full-Text   Cite this paper   Add to My Lib

Abstract:

Despite the heightened awareness of diabetes as a major health problem, evidence on the impact of assistance and organizational factors, as well as of adherence to recommended care guidelines, on morbidity and mortality in diabetes is scanty. We identified diabetic residents in Torino, Italy, as of 1st January 2002, using multiple independent data sources. We collected data on several laboratory tests and specialist medical examinations to compare primary versus specialty care management of diabetes and the fulfillment of a quality-of-care indicator based on existing screening guidelines (GCI). Then, we performed regression analyses to identify associations of these factors with mortality and cardiovascular morbidity over a 4 year- follow-up. Patients with the lowest degree of quality of care (i.e. only cared for by primary care and with no fulfillment of GCI) had worse RRs for all-cause (1.72 [95% CI 1.57–1.89]), cardiovascular (1.74 [95% CI 1.50–2.01]) and cancer (1.35 [95% CI 1.14–1.61]) mortality, compared with those with the highest quality of care. They also showed increased RRs for incidence of major cardiovascular events up to 2.03 (95% CI 1.26–3.28) for lower extremity amputations. Receiving specialist care itself increased survival, but was far more effective when combined with the fulfillment of GCI. Throughout the whole set of analysis, implementation of guidelines emerged as a strong modifier of prognosis. We conclude that management of diabetic patients with a pathway based on both primary and specialist care is associated with a favorable impact on all-cause mortality and CV incidence, provided that guidelines are implemented.

References

[1]  Khuwaja AK, Khowaja LA, Cosgrove P (2010) The economic costs of diabetes in developing countries: some concerns and recommendations. Diabetologia Feb 53(2): 389–90; author reply 391-2.
[2]  Govan L, Wu O, Briggs A, Colhoun HM, McKnight J, et al. Scottish Diabetes Research Network Epidemiology Group (2011) Inpatient costs for people with type 1 and type 2 diabetes in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia Aug 54(8): 2000–8.
[3]  International Diabetes Federation (1999) A desktop guide to type 2 diabetes mellitus. International Diabetes federation. Brussels.
[4]  De Micheli A (2008) Italian standards for diabetes mellitus 2007: executive summary Diabete Italia, AMD Associazione Medici Diabetologi, SID Società Italiana di Diabetologia. Acta Diabetol 45: 107–127.
[5]  EuCID (2008) Final Report European Core Indicators in Diabetes Project. Available from http://ec.europa.eu/health/ph_projects/2?005/action1/action1_2005_11_en.htm#3 Last Access August 11, 2011.
[6]  Grant RW, Buse JB, Meigs JB (2005) Quality of diabetes care in U.S. academic medical centers. Diabetes Care 28: 337–442.
[7]  Griffin SJ, Kinmonth AL (2009) Systems for routine surveillance in people with diabetes mellitus. Cochrane Database Syst Rev Jan 21(1): CD000541. Review.
[8]  Verlato G, Muggeo M, Bonora E, Corbellini M, Bressan F (1996) Attending the diabetes center is associated with increased 5-year survival probability of diabetic patients: the Verona diabetes study. Diabetes Care 19: 211–213.
[9]  Giorda C, Petrelli A, Gnavi R, Regional Board for Diabetes Care of Piemonte (2006) The impact of second-level specialized care on hospitalization in persons with diabetes: a multilevel population-based study. Diabet Med 23: 377–383.
[10]  Gnavi R, Picariello R, Karaghiosoff L, Costa G, Giorda C (2009) Determinants of quality in diabetes care process: The population-based Torino Study. Diabetes Care Nov 32(11): 1986–92. Epub 2009 Aug 12.
[11]  Gnavi R, Karaghiosoff L, Costa G, Merletti F, Bruno G (2008) Socio-economic differences in prevalence of diabetes in Italy: the population-based Turin study. Nutr Metab Cardiovasc Dis 18: 678–682.
[12]  Gnavi R, Canova C, Picariello R, Tessari R, Simonato L, et al. (2011) Mortality, incidence of cardiovascular diseases, and educational level among the diabetic and non-diabetic populations in two large Italian cities. Diabetes Research Clinical Practice. doi:10.1016/j.diabres.2011.02.011.
[13]  Barchielli A, Balzi D, Bruni A, Canova C, Cesaroni G, et al. (2008) Acute myocardial infarction incidence estimated using a standard algorithm based on electronic health data in different areas of Italy. Epidemiol Prev 32(Suppl 1): 30–7.
[14]  Simonato L, Canova C, Corrao G, Costa G, Tessari R (2008) Exploiting electronic health archives for epidemiological purposes. An experience using a standardized approach to estimate diseases in various areas of Italy. Epidemiol Prev 32(Suppl): 1–96.
[15]  Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, et al. (2010) Diabetes and cancer: a consensus report. CA Cancer J Clin Jul–Aug 60(4): 207–21.
[16]  Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, et al. (2009) New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care Sep 32(9): 1620–5.
[17]  Mc Allister FA, Majumdar SR, Eurich DT, Johnson JA (2007) The effect of specialist care within the first year on subsequent outcomes in 24232 adults with new-onset diabetes mellitus: population-based cohort study. Qual Saf Health Care 16: 6–11.
[18]  Bruno G, Merletti F, Biggeri A, Bargero G, Ferrero S, et al. (2005) Fibrinogen and AER are major independent predictors of 11-year cardiovascular mortality in type 2 diabetes: the Casale Monferrato study. Diabetologia 48: 427–434.
[19]  Shah BR, Hux JE, Laupacis A, Zinman B, van Walraven C (2005) Clinical inertia in response to inadequate glycemic control: do specialists differ from primary care physicians? Diabetes Care Mar 28(3): 600–6.
[20]  de Belvis AG, Pelone F, Biasco A, Ricciardi W, Volpe M (2009) Can primary care professionals' adherence to Evidence Based Medicine tools improve quality of care in type 2 diabetes mellitus? A systematic review. Diabetes Res Clin Pract Aug 85(2): 119–31.
[21]  Renders CM, Valk GD, Franse LV, Schellevis FG, van Eijk JT, et al. (2001) Long-term effectiveness of a quality improvement program for patients with type 2 diabetes in general practice. Diabetes Care Aug 24(8): 1365–70.
[22]  Li Suying, Liu Jiannong, Gilbertson D, McBean M, Dowd B, et al. (2008) An instrumental variable analysis of the impact of practice guidelines on improving quality of care and diabetes-related outcomes in the elderly Medicare population. Am J Med Qual May–Jun 23(3): 222–30.
[23]  De Berardis G, Pellegrini F, Franciosi M, Belfiglio M, Di Nardo B, et al. QuED (Quality of Care and Outcomes in Type 2 Diabetes) Study Group (2008) Quality of diabetes care predicts the development of cardiovascular events: results of the QuED study. Nutr Metab Cardiovasc Dis Jan 18(1): 57–65.
[24]  Giorda CB, Guida P, Avogaro A, Cortese C, Mureddu GF, et al. EFFECTUS Steering Committee (2009) Association of physicians' accuracy in recording with quality of care in cardiovascular medicine. Eur J Cardiovasc Prev Rehabil Dec 16(6): 722–8.
[25]  Kawachi I, Adler NE, Down WH (2010) Money schooling and health: Mechanisms and causal evidence. Ann N Y Acad Sci Feb; 1186: 56–68.
[26]  Bodenheimer T (2006) Primary care–will it survive? N Engl J Med Aug 31; 355(9): 861–4.

Full-Text

comments powered by Disqus