All Title Author
Keywords Abstract

生态学报  2011 

Effects of nitrogen addition on the abundance and composition of soil ammonia oxidizers in Inner Mongolia Grassland

Keywords: Nitrogen deposition,Nitrogen accumulation,Ammonia-oxidizing bacteria,Ammonia-oxidizing archaea,Nitrification

Full-Text   Cite this paper   Add to My Lib


Nitrogen accumulation in soil is increasing in Inner Mongolia which is resulted mainly from fertilization accompanied by conversion of large area of grasslands to croplands. Ammonia-oxidation is the key step of nitrification which is driven by ammonia-oxidizing microorganisms, and study on the response of ammonia-oxidizing microorganisms is necessary for understanding the effects of nitrogen fertilization on ecosystem functions. In this study, the abundance and community structure of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) under long-term N addition of different rates (0, 1.75, 5.25, 10.5, 17.5, and 28 g N m?2 yr?1) in a typical steppe of the Inner Mongolia Grassland were investigated using quantitative real-time PCR, cloning and sequencing based on amoA gene. In addition, soil potential ammonia oxidation rate was analyzed. Our results demonstrated that, with the increase of nitrogen addition rate, soil pH declined gradually from 6.6 to 4.9, and potential ammonia oxidation rate also declined which was positively correlated with soil pH (P < 0.01), while the copy number of bacterial amoA gene increased and positively (P < 0.01) correlated with ammonia concentration in soil. The archaeal amoA gene copy number did not change a lot with N nitrogen addition rate below 10.5 g N/m2, but significantly decreased with addition of 17.5 and 28 g N m?2 yr?1. Sequencing of clone libraries of treatments revealed that in the treatment without N addition, AOB was dominated by Cluster 3a1 of Nitrosospira with a proportion of 87%, while in the treatment with N addition of 28 g N m?2 yr?1, proportion of Cluster 2 increased significantly to 41%. All archaeal amoA sequences were affiliated with the soil/sediment clade, and no significant variation of community structure was found between the treatments without N addition and with 28 g N m?2 yr?1 addition rate. In conclusion, this study demonstrated significant effects of nitrogen addition on potential ammonia oxidation rate and compositions of ammonia-oxidation microorganisms, which may have important implications for evaluating the impacts of N accumulation on ecosystem functioning. Further, the effects of pH and ammonia concentration on the ammonia oxidation rate and compositions of ammonia-oxidation microorganisms were discussed.


comments powered by Disqus