All Title Author
Keywords Abstract

PLOS ONE  2012 

Hysteresis in Pressure-Driven DNA Denaturation

DOI: 10.1371/journal.pone.0033789

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the past, a great deal of attention has been drawn to thermal driven denaturation processes. In recent years, however, the discovery of stress-induced denaturation, observed at the one-molecule level, has revealed new insights into the complex phenomena involved in the thermo-mechanics of DNA function. Understanding the effect of local pressure variations in DNA stability is thus an appealing topic. Such processes as cellular stress, dehydration, and changes in the ionic strength of the medium could explain local pressure changes that will affect the molecular mechanics of DNA and hence its stability. In this work, a theory that accounts for hysteresis in pressure-driven DNA denaturation is proposed. We here combine an irreversible thermodynamic approach with an equation of state based on the Poisson-Boltzmann cell model. The latter one provides a good description of the osmotic pressure over a wide range of DNA concentrations. The resulting theoretical framework predicts, in general, the process of denaturation and, in particular, hysteresis curves for a DNA sequence in terms of system parameters such as salt concentration, density of DNA molecules and temperature in addition to structural and configurational states of DNA. Furthermore, this formalism can be naturally extended to more complex situations, for example, in cases where the host medium is made up of asymmetric salts or in the description of the (helical-like) charge distribution along the DNA molecule. Moreover, since this study incorporates the effect of pressure through a thermodynamic analysis, much of what is known from temperature-driven experiments will shed light on the pressure-induced melting issue.

References

[1]  Hennig D, Archilla JFR (2006) e-print at arXiv:nlin.PS/0306019 v1 12 Jun 2003 updated to Feb. 28, 2006.
[2]  Rief M, Clausen-Schaumann H, Gaub HE (1999) Sequence-dependent mechanics of single DNA molecules, Nature - Structural Biology 6, 4, 346–349:
[3]  Williams MC, Pant K, Rouzina I, Karpel RL (2004) Single molecule force spectroscopy studies of DNA denaturation by T4 gene 32 protein, Spectroscopy 18, 203–211:
[4]  Peyrard M (2004) Nonlinear dynamics and statistical physics of DNA, Nonlinearity 17 R1-R40: doi:10.1088/0951-7715/17/2/R01.
[5]  Barbi M, Lepri S, Peyrard M, Teodorakopoulos N (2003) Thermal denaturation of a helicoidal DNA model, Physical Review E 68, 061909:
[6]  Rouzina , I , Bloomfield , VA (2001) Force-Induced Melting of the DNA Double Helix 1. Thermodynamic Analysis, Biophysical Jornal, 80, 2, 882–893:
[7]  Zoli M (2011) Stacking Interactions in Denaturation of DNA Fragments, arXiv, 1106.4207:
[8]  Dubins DN, Lee A, Macgregor RB Jr, Chalikian TV (2001) On the Stability of Double Stranded Nucleic Acids, J. Am. Chem. Soc. 123, 9254–9259:
[9]  Ryan G, Macgregor RB Jr (2005) Comparison of the Heat- and Pressure-Induced Helix-Coil Transition of Two DNA Copolymers, J. Phys. Chem. B 109, 15558–15565:
[10]  Reza Amiri A (2010) Pressure Dependence and Volumetric Properties of Short DNA, Master Thesis, University of Toronto.
[11]  Kleckner N, Zickler D, Jones GH, Dekker J, Padmore R, et al. (2004) A Mechanical Basis for chromosome function, PNAS, August 24, 101, 34, 12592–12597:
[12]  Choi CH, Kalosakas G, Rasmussen KO, Hiromura M, Bishop AR, et al. (2004) DNA dynamically directs its own transcription initiation, Nucleic Acids Research, 32, 4, 1584–1590: doi 10.1093/nar/gkh335.
[13]  Kurzyński M (2000) Internal dynamics of biomolecules and statistical theory of biochemical processes, Physica A, 285, 29–47:
[14]  Cocco S, Marko JF, Monasson R (2002) Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping, Compte rendu de l’ Academie des Sciences, Physique 3, 569:
[15]  Cocco S, Yan J, Léger JF, Chatenay D, Marko JF (2004) Overstretching and force-driven strand-separation of double-helix DNA, Phys. Rev. E 70, 011910:
[16]  Hansen L, Podgornik R, Parsegian VA (2001) Osmotic properties of charged cylinders: critical evaluation of counterion condensation theory, Phys. (2001).Rev. E 64, 021907.
[17]  Kanduc M, Dobnikar J, Podgornik R (2009) Counterion-mediated electrostatic interactions between helical molecule, Soft Matter 5, 868. (2009).
[18]  Frank-Kamenestskii MD (2006) in Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems, A. A. Golovin, A. A. Nepomnyashchy (eds.), Springer, Amsterdam.
[19]  Glasel J (1995) Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios, BioTechniques 18, 1, 62–63:
[20]  Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature, J. Mol. Biol. 5, 109–118:
[21]  Breslauer KJ (1992) Extracting thermodynamic data from equilibrium melting curves for oligonucleotide order-disorder transitions, Methods Enzymol. 259, 221–242, (1995), also Breslauer KJ, Freire E, Straume M, Calorimetry: a tool for DNA and ligand-DNA studies, Methods Enzymol. 211, 533–567:
[22]  Dagdug L, Young L (2004) Theoretical basis for the study of the effect of base composition on DNA melting, Rev. Mex. Fis. 50 (6), 594–600:
[23]  Benham CJ (1996) Duplex destabilization in superhelical DNA is predicted to occur at specific transcriptional regulatory regions, J. Mol. Biol. 255, 425–434:
[24]  Essevaz-Roulet B, Bockelmann U, Heslot F (1997) Mechanical separation of the complementary strands of DNA, Proc. Natl. Acad. Sci. USA (now PNAS) 94, 11935–11940:
[25]  Wilton DJ, Ghosh M, Chary GVA, Akasaka K, Williamson MP (2008) Structural change in a B-DNA helix with hydrostatic pressure, Nucleic Acids Research 36, 12, 4032–4037:
[26]  Jou D, Perez-Garcia C, Garcia-Colin LS, Lopez de Haro M, Rodriguez RF (1985) Generalized hydrodynamics and extended irreversible thermodynamics, Phys. Rev. A 31, 2502–2508:
[27]  Chen M, Eu BC (1993) On the integrability of differential forms related to nonequilibrium entropy and irreversible thermodynamics, J.Math. Phys. 34, (7), 3012–29:
[28]  Jou D, Casas-Vázquez J, Lebón G (1998) Extended Irreversible Thermodynamics, Springer-Verlag, N. York.
[29]  Daune M (1999) Molecular Biophysics, structures in motion, Oxford University Press, 528 p., Oxford, USA. (1999).
[30]  Dobnikar J, Casta?eda-Priego R, Trizac E, von Grünberg HH (2006) Testing the relevance of effective interaction potentials between highly-charged colloids in suspension, New Journal Physics, 8, 277:
[31]  Belloni L (2000) Colloidal interactions, J. Phys.: Condens. Matt. 113, R549-R587:
[32]  Trizac E, Belloni L, Dobnikar J, von Grünberg HH, Casta?eda-Priego R (2007) Macroion virial contribution to the osmotic pressure in charge-stabilized colloidal suspensions, Phys. Rev. E, 75, 011401:
[33]  MacQuarrie DA (1976) Statistical Mechanics, Harper and Row, New York.
[34]  Denton AR (2010) Poisson-Boltzmann theory of charged colloids: limits of the cell model for salty suspensions, J. Phys.: Condens. Matt., 22, 364108:
[35]  Alexander S, Chaikin PM, Morales GJ, Pincus P, Hone D (1984) Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory, J. Chem. Phys., 80, 5776:
[36]  Trizac E, Bocquet J, Aubouy M, von Grünberg HH (2003) Alexander’s Prescription for Colloidal Charge Renormalization, Langmuir, 19, 4027:
[37]  Pianegonda S, Trizac E, Levin Y (2007) The renormalized jellium model for spherical and cylindrical colloids, J. Chem. Phys., 126, 014702:
[38]  Hernandez-Lemus E, Orgaz E (2002) Hysteresis in nonequilibrium steady states: the role of dissipative couplings, Rev. Mex. Fis. 48, S1, 38–45:
[39]  Mayergoyz ID (1986) Mathematical Models of Hysteresis, Phys. Rev. Lett. 56, 15181521:
[40]  Cattaneo C (1949) Sulla conduzione del calore, Atti del Seminario Matematico e Fisico dellUniversitá di Modena 3, 83101:
[41]  Vernotte P (1958) Les paradoxes de la theorie continue de lequation de la chaleur, Compte Rendus 246, 31543155:
[42]  Wannier GH (1987) Statistical Physics, Dover Publications, N. York, see chapters 22 and 23:
[43]  Stroock DW (1982) Lecture topics in stochastic differential equations, Tata Institute of Fundamental Research Lectures in Mathematics and Physics Springer Verlag, Bombay Chapt. 2 p.
[44]  Poland D, Scheraga HA (1970) Theory of Helix-Coil Transitions in Biopolymers. Academic Press, New York, see also Poland D, (1974) Recursion relation generation of probability profiles for specific-sequence macromolecules with long-range correlations, Biopolymers 13: 1859–1871.
[45]  Blake RD, Bizzaro JW, Blake JD, Day GR, Delcourt SG, et al. (1999) Statistical mechanical simulation of polymeric DNA melting with MELTSIM, Bioinformatics 15(5): 370–375.
[46]  Salim , NS , Feig , AL (2009) Isothermal Titration Calorimetry of RNA, Methods 47,3, 198205:
[47]  Whitelam S, Pronk S, Geissler PL (2008) There and (Slowly) Back Again: Entropy-Driven Hysteresis in a Model of DNA Overstretching, Biophysical Journal 94, 7, 2452–2469:
[48]  Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and singlestranded DNA molecules, Science, 271, 795799:
[49]  Storm C, Nelson PC (2003) Theory of high-force DNA stretching and overstretching, Phys Rev. E. 67, 051906:
[50]  von Zglinicki T, Bürkle A, Kirkwood TB (2001) Stress, DNA damage and ageing – an integrative approach, Exp Gerontol. 36, 7, 1049–62:
[51]  Kurki S, Latonen L, Laiho M (2003) Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damagespecific nuclear relocalization, Journal of Cell Science 116, 3917–3925:
[52]  Ichijima Y, Yoshioka K, Yoshioka Y, Shinohe K, Fujimori H, et al. (2010) DNA Lesions Induced by Replication Stress Trigger Mitotic Aberration and Tetraploidy Development, PLoS ONE 5, 1, e8821:

Full-Text

comments powered by Disqus