All Title Author
Keywords Abstract

PLOS ONE  2012 

Plasmodium vivax Adherence to Placental Glycosaminoglycans

DOI: 10.1371/journal.pone.0034509

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Plasmodium vivax infections seldom kill directly but do cause indirect mortality by reducing birth weight and causing abortion. Cytoadherence and sequestration in the microvasculature are central to the pathogenesis of severe Plasmodium falciparum malaria, but the contribution of cytoadherence to pathology in other human malarias is less clear. Methodology The adherence properties of P. vivax infected red blood cells (PvIRBC) were evaluated under static and flow conditions. Principal Findings P. vivax isolates from 33 patients were studied. None adhered to immobilized CD36, ICAM-1, or thrombospondin, putative ligands for P. falciparum vascular cytoadherence, or umbilical vein endothelial cells, but all adhered to immobilized chondroitin sulphate A (CSA) and hyaluronic acid (HA), the receptors for adhesion of P. falciparum in the placenta. PvIRBC also adhered to fresh placental cells (N = 5). Pre-incubation with chondroitinase prevented PvIRBC adherence to CSA, and reduced binding to HA, whereas preincubation with hyaluronidase prevented adherence to HA, but did not reduce binding to CSA significantly. Pre-incubation of PvIRBC with soluble CSA and HA reduced binding to the immobilized receptors and prevented placental binding. PvIRBC adhesion was prevented by pre-incubation with trypsin, inhibited by heparin, and reduced by EGTA. Under laminar flow conditions the mean (SD) shear stress reducing maximum attachment by 50% was 0.06 (0.02) Pa but, having adhered, the PvIRBC could then resist detachment by stresses up to 5 Pa. At 37°C adherence began approximately 16 hours after red cell invasion with maximal adherence at 30 hours. At 39°C adherence began earlier and peaked at 24 hours. Significance Adherence of P. vivax-infected erythrocytes to glycosaminoglycans may contribute to the pathogenesis of vivax malaria and lead to intrauterine growth retardation.

References

[1]  Beeson JG, Duffy PE (2005) The immunology and pathogenesis of malaria during pregnancy. Curr Top Microbiol Immunol 297: 187–227.
[2]  Rogerson SJ, Hviid L, Duffy PE, Leke RF, Taylor DW (2007) Malaria in pregnancy: pathogenesis and immunity. Lancet Infect Dis 7: 105–117.
[3]  Fried M, Duffy PE (1996) Adherence of Plasmodium falciparum to chondroitin sulphate A in the human placenta. Science 272: 1502–1504.
[4]  Buffet PA, Gamain B, Scheidig C, Baruch D, Smith JD, et al. (1999) Plasmodium falciparum domain mediating adhesion to chondroitin sulphate A: a receptor for human placental infection. Proc Natl Acad Sci U S A 96: 12743–12748.
[5]  Singh K, Gittis AG, Nguyen P, Gowda DC, Miller LH, et al. (2008) Structure of the DBL3x domain of pregnancy-associated malaria protein VAR2CSA complexed with chondroitin sulphate A. Nat Struct Mol Biol 15: 932–938.
[6]  Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, et al. (2007) Vivax malaria: neglected and not benign. Am J Trop Med Hyg 77: 79–87.
[7]  Mendis K, Sina BJ, Marchesini P, Carter R (2001) The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64: 97–106.
[8]  Udomsangpetch R, Thanikkul K, Pukrittayakamee S, White NJ (1995) Rosette formation by Plasmodium vivax. Trans R Soc Trop Med Hyg 89: 635–637.
[9]  Carvalho BO, Lopes SC, Nogueira PA, Orlandi PP, Bargieri DY, et al. (2010) On the cytoadhesion of Plasmodium vivax-infected erythrocytes. J Infect Dis. 202: 638–647.
[10]  McGready R, Lee S, Wiladphaingern J, Ashley E, Rijken M, et al. (2011) Adverse effects of falciparum and vivax malaria and the safety of antimalarial treatment in early pregnancy: a population-based study. Lancet Infect Dis. Dec 12:
[11]  Nosten F, McGready R, Simpson JA, Thwai KL, Balkan S, et al. (1999) Effects of Plasmodium vivax malaria in pregnancy. Lancet 354: 546–549.
[12]  Snounou G (1996) Detection and identification of the four malaria parasite species infecting humans by PCR amplification. Methods Mol Biol 50: 263–291.
[13]  Chotivanich K, Silamut K, Udomsangpetch R, Stepniewska KA, Pukrittayakamee S, et al. (2001) Ex-vivo short-term culture and developmental assessment of Plasmodium vivax. Trans R Soc Trop Med Hyg 95: 677–680.
[14]  Andrysiak PM, Collins WE, Campbell GH (1986) Concentration of Plasmodium ovale- and Plasmodium vivax-infected erythrocytes from nonhuman primate blood using Percoll gradients. Am J Trop Med Hyg 35: 251–254.
[15]  Ribaut C (2008) Concentration and purification by magnetic separation of the erythrocytic stages of all human Plasmodium species. Malar J 7: 45.
[16]  Chai W, Beeson JG, Lawson AM (2002) The structural motif in chondroitin sulphate for adhesion of Plasmodium falciparum-infected erythrocytes comprises disaccharide units of 4-O-sulphated and non-sulphated N-acetylgalactosamine linked to glucuronic acid. J Biol Chem 277: 22438–22446.
[17]  Beeson JG, Rogerson SJ, Brown GV (2002) Evaluating specific adhesion of Plasmodium falciparum-infected erythrocytes to immobilised hyaluronic acid with comparison to binding of mammalian cells. Int J Parasitol 32: 1245–1252.
[18]  Chotivanich KT, Pukrittayakamee S, Simpson JA, White NJ, Udomsangpetch R (1998) Characteristics of Plasmodium vivax-infected erythrocyte rosettes. Am J Trop Med Hyg 59: 73–76.
[19]  Udomsangpetch R, Webster HK, Pattanapanyasat K, Pitchayangkul S, Thaithong S (1992) Cytoadherence characteristics of rosette-forming Plasmodium falciparum. Infect Immun; 60: 4483–90.
[20]  Beeson JG, Rogerson SJ, Cooke BM, Reeder JC, Chai W, et al. (2000) Adhesion of Plasmodium falciparum-infected erythrocytes to hyaluronic acid in placental malaria. Nat Med 6: 86–90.
[21]  Stamper HB , Woodruff JJ (1977) An in vitro model of lymphocyte homing. I. Characterization of the interaction between thoracic duct lymphocytes and specialized high-endothelial venules of lymph nodes. J Immunol 119: 772–780.
[22]  Udomsangpetch R, Reinhardt PH, Schollaardt T, Elliott JF, Kubes P, et al. (1997) Promiscuity of clinical Plasmodium falciparum isolates for multiple adhesion molecules under flow conditions. J Immunol 158: 4358–4364.
[23]  Suwanarusk R, Cooke BM, Dondorp AM, Silamut K, Sattabongkot J, et al. (2004) The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax. J Infect Dis 189: 190–194.
[24]  Williams TN, Maitland K, Phelps L, Bennett S, Peto TE, et al. (1997) Plasmodium vivax: a cause of malnutrition in young children. QJM. 90: 751–757.
[25]  Fernando SD, Gunawardena DM, Bandara MR, De Silva D, Carter R, et al. (2003) The impact of repeated malaria attacks on the school performance of children. Am J Trop Med Hyg 69: 582–588.
[26]  Tjitra E, Anstey NM, Sugiarto P, Warikar N, Kenangalem E, et al. (2008) Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med 5: e128.
[27]  Anstey NM, Handojo T, Pain MC, Kenangalem E, Tjitra E, et al. (2007) Lung injury in vivax malaria: pathophysiological evidence for pulmonary vascular sequestration and posttreatment alveolar-capillary inflammation. J Infect Dis 195: 589–596.
[28]  Fried M, Domingo GJ, Gowda CD, Mutabingwa TK, Duffy PE (2006) Plasmodium falciparum: chondroitin sulphate A is the major receptor for adhesion of parasitized erythrocytes in the placenta. Exp Parasitol 113: 36–42.
[29]  Beeson JG, Rogerson SJ, Cooke BM, Reeder JC, Chai W, et al. (2000) Adhesion of Plasmodium falciparum –infected erythrocytes to hyaluronic acid in placental malaria. Nat Med 6: 86–90.
[30]  Beeson JG, Brown GV (2004) Plasmodium falciparum-infected erythrocytes demonstrate dual specificity for adhesion to hyaluronic acid and chondroitin sulphate A and have distinct adhesive properties. J Infect Dis 189: 169–179.
[31]  Luxemburger C, McGready R, Kham A, Morison L, Cho T, et al. (2001) Effects of malaria during pregnancy on infant mortality in an area of low malaria transmission Am J Epidemiol 154: 459–465.
[32]  Gardner JP, Pinches RA, Roberts DJ, Newbold CI (1996) Variant antigens and endothelial receptor adhesion in Plasmodium falciparum. Proc Natl Acad Sci USA 93: 3503–3508.
[33]  Udomsangpetch R, Pipitaporn B, Silamut K, Pinches R, Kyes S, et al. (2002) Febrile temperatures induce cytoadherence of ring-stage Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA 99: 11825–11829.
[34]  McGready R, Davison BB, Stepniewska K, Cho T, Shee H, et al. (2004) The effects of Plasmodium falciparum and P. vivax infections on placental histopathology in an area of low malaria transmission. Am J Trop Med Hyg 70: 398–407.
[35]  Poespoprodjo JR, Fobia W, Kenangalem E, Lampah DA, Warikar N, et al. (2008) Adverse pregnancy outcomes in an area where multidrug-resistant plasmodium vivax and Plasmodium falciparum infections are endemic. Clin Infect Dis 46: 1374–1381.
[36]  Fried M, Nosten F, Brockman A, Brabin BJ, Duffy PE (1998) Maternal antibodies block malaria. Nature 395: 851–852.

Full-Text

comments powered by Disqus