All Title Author
Keywords Abstract

PLOS ONE  2012 

Comparable Ages for the Independent Origins of Electrogenesis in African and South American Weakly Electric Fishes

DOI: 10.1371/journal.pone.0036287

Full-Text   Cite this paper   Add to My Lib


One of the most remarkable examples of convergent evolution among vertebrates is illustrated by the independent origins of an active electric sense in South American and African weakly electric fishes, the Gymnotiformes and Mormyroidea, respectively. These groups independently evolved similar complex systems for object localization and communication via the generation and reception of weak electric fields. While good estimates of divergence times are critical to understanding the temporal context for the evolution and diversification of these two groups, their respective ages have been difficult to estimate due to the absence of an informative fossil record, use of strict molecular clock models in previous studies, and/or incomplete taxonomic sampling. Here, we examine the timing of the origins of the Gymnotiformes and the Mormyroidea using complete mitogenome sequences and a parametric Bayesian method for divergence time reconstruction. Under two different fossil-based calibration methods, we estimated similar ages for the independent origins of the Mormyroidea and Gymnotiformes. Our absolute estimates for the origins of these groups either slightly postdate, or just predate, the final separation of Africa and South America by continental drift. The most recent common ancestor of the Mormyroidea and Gymnotiformes was found to be a non-electrogenic basal teleost living more than 85 millions years earlier. For both electric fish lineages, we also estimated similar intervals (16–19 or 22–26 million years, depending on calibration method) between the appearance of electroreception and the origin of myogenic electric organs, providing rough upper estimates for the time periods during which these complex electric organs evolved de novo from skeletal muscle precursors. The fact that the Gymnotiformes and Mormyroidea are of similar age enhances the comparative value of the weakly electric fish system for investigating pathways to evolutionary novelty, as well as the influences of key innovations in communication on the process of species radiation.


[1]  Bullock TH, Hopkins CD, Popper AN, Fay RR, editors. (2005) Electroreception. New York: Springer Science+Business Media, Icn.
[2]  Carlson BA (2009) Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior. J Neurosci 29: 9417–9428.
[3]  Heiligenberg W (1977) Principles of electrolocation and jamming avoidance in electric fish: a neuroethological approach. Berlin and New York: Springer-Verlag. 85 p.
[4]  Hopkins CD, Bass AH (1981) Temporal coding of species recognition signals in an electric fish. Science 212: 85–87.
[5]  Kawasaki M (2009) Evolution of time-coding systems in weakly electric fishes. Zool Sci 26: 587–599.
[6]  Krahe R, Bastian J, Chacron MJ (2008) Temporal processing across multiple topographic maps in the electrosensory system. J Neurophysiol 100: 852–867.
[7]  Lissman HW, Machin KE (1958) The mechanisms of object location in Gymnarchus niloticus and similar fish. J Exp Biol 35: 451–486.
[8]  Markham MR, McAnelly ML, Stoddard PK, Zakon HH (2009) Circadian and social cues regulate ion channel trafficking. PLoS Biol 7: e1000203.
[9]  Rose GJ (2004) Insights into neural mechanisms and evolution of behaviour from electric fish. Nature Rev Neurosci 5: 943–951.
[10]  Zakon HH (2003) Insight into the mechanisms of neuronal processing from electric fish. Curr Opin Neurobiol 13: 744–750.
[11]  Crampton WGR, Lovejoy NR, Waddell JC (2011) Reproductive character displacement and signal ontogeny in a sympatric assemblage of electric fish. Evolution 65: 1650–1666.
[12]  Arnegard ME, Bogdanowicz SM, Hopkins CD (2005) Multiple cases of striking genetic similarity between alternate electric fish signal morphs in sympatry. Evolution 59: 324–343.
[13]  Arnegard ME, McIntyre PB, Harmon LJ, Zelditch ML, Crampton WGR, et al. (2010) Sexual signal evolution outpaces ecological divergence during electric fish species radiation. Amer Nat 176: 335–356.
[14]  Feulner PGD, Kirschbaum F, Mamonekene V, Ketmaier V, Tiedemann R (2007) Adaptive radiation in African weakly electric fish (Teleostei: Mormyridae: Campylomormyrus): a combined molecular and morphological approach. J Evol Biol 20: 403–414.
[15]  Sullivan JP, Lavoué S, Arnegard ME, Hopkins CD (2004) AFLPs resolve phylogeny and reveal mitochondrial introgression within a species flock of African electric fish (Mormyroidea : Teleostei). Evolution 58: 825–841.
[16]  Carlson BA, Arnegard ME (2011) Neural innovations and the diversification of African weakly electric fishes. Commun Integr Biol 4: 720–725.
[17]  Carlson BA, Hasan SM, Hollmann M, Miller DB, Harmon LJ, et al. (2011) Brain evolution triggers increased diversification of electric fishes. Science 332: 583–586.
[18]  Lavoué S, Arnegard ME, Sullivan JP, Hopkins CD (2008) Petrocephalus of Odzala offer insights into evolutionary patterns of signal diversification in the Mormyridae, a family of weakly electrogenic fishes from Africa. J Physiol–Paris 102: 322–339.
[19]  Arnegard ME, Zwickl DJ, Lu Y, Zakon HH (2010) Old gene duplication facilitates origin and diversification of a new communication system–twice. Proc Natl Acad Sci, USA 107: 22172–22177.
[20]  Zakon HH, Lu Y, Zwickl DJ, Hillis DM (2006) Sodium channel genes and the evolution of diversity in communication signals of electric fishes: Convergent molecular evolution. Proc Natl Acad Sci, USA 103: 3675–3680.
[21]  Alves-Gomes JA, Ortí G, Haygood M, Heiligenberg W, Meyer A (1995) Phylogenetic analysis of the South American electric fishes (Order Gymnotiformes) and the evolution of their electrogenic system: A synthesis based on morphology, electrophysiology, and mitochondrial sequence data. Mol Biol Evol 12: 298–318.
[22]  Lavoué S, Sullivan JP, Hopkins CD (2003) Phylogenetic utility of the first two introns of the S7 ribosomal protein gene in African electric fishes (Mormyroidea : Teleostei) and congruence with other molecular markers. Biol J Linnean Soc 78: 273–292.
[23]  Lovejoy NR, Lester K, Crampton WGR, Marques FPL, Albert JS (2010) Phylogeny, biogeography, and electric signal evolution of Neotropical knifefishes of the genus Gymnotus (Osteichthyes: Gymnotidae). Mol Phylogenet Evol 54: 278–290.
[24]  Sullivan JP, Lavoué S, Hopkins CD (2000) Molecular systematics of the African electric fishes (Mormyroidea: Teleostei) and a model for the evolution of their electric organs. J Exp Biol 203: 665–683.
[25]  Albert JS, Crampton WGR (2006) Electroreception and electrogenesis. In: Evans DH, Clairbone JB, editors. The Physiology of Fishes. 3rd ed. Boca Raton: CRC Press. pp. 429–470.
[26]  Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6: 25–46.
[27]  Fricke R, Eschmeyer WN, editors. (2011) Catalog of Fishes electronic version website. 29: Available: Accessed 2011 Mar.
[28]  Fink SV, Fink WL (1996) Interrelationships of ostariophysan fishes (Teleostei). In: Stiassny MLJ, Parenti LR, Johnson GD, editors. Interrelationships of Fishes. New York: Academic Press. pp. 209–245.
[29]  Arnegard ME, Carlson BA (2005) Electric organ discharge patterns during group hunting by a mormyrid fish. Proc R Soc Lond [Biol] 272: 1305–1314.
[30]  Hopkins CD (2010) Electroreception. In: Goldstein EB, editor. Encyclopedia of Perception. Thousands Oaks, CA: Sage Publications. pp. 384–387.
[31]  Alves-Gomes JA (2001) The evolution of electroreception and bioelectrogenesis in teleost fish: a phylogenetic perspective. J Fish Biol 58: 1489–1511.
[32]  Lavoué S, Sullivan JP (2004) Simultaneous analysis of five molecular markers provides a well-supported phylogenetic hypothesis for the living bony-tongue fishes (Osteoglossomorpha : Teleostei). Mol Phylogenet Evol 33: 171–185.
[33]  Bullock TH, Behrend K, Heiligenberg W (1975) Comparison of jamming avoidance responses in gymnotid and gymnarchid electric fish - case of convergent evolution of behavior and its sensory basis. J Comp Physiol 103: 97–121.
[34]  Carlson BA (2002) Neuroanatomy of the mormyrid electromotor control system. J Comp Neurol 454: 440–455.
[35]  Kawasaki M (1993) Independently evolved jamming avoidance responses employ identical computational algorithms: a behavioral study of the African electric fish, Gymnarchus niloticus. J Comp Physiol [A] 173: 9–22.
[36]  Kirschbaum F (1987) Reproduction and development of the weakly electric fish, Pollimyrus isidori (Mormyridae, Teleostei) in captivity. Environ Biol Fishes 20: 11–31.
[37]  Kirschbaum F (1995) Reproduction and development in mormyriform and gymnotiform fishes. In: Moller P, editor. Electric Fishes: History and Behavior. London: Chapman and Hall. pp. 267–301.
[38]  Kirschbaum F, Schugardt C (2002) Reproductive strategies and developmental aspects in mormyrid and gymnotiform fishes. J Physiol–Paris 96: 557–566.
[39]  Marrero C, Winemiller KO (1993) Tube-snouted gymnotiform and mormyriform fishes - convergence of a specialized foraging mode in teleosts. Environ Biol Fishes 38: 299–309.
[40]  Moller P (1995) Electric fishes: history and behavior; Pitcher TJ, editor. London: Chapman and Hall. 584 p.
[41]  Winemiller KO, Adite A (1997) Convergent evolution of weakly electric fishes from floodplain habitats in Africa and South America. Environ Biol Fishes 49: 175–186.
[42]  Bass AH (1986) Electric organs revisited: evolution of a vertebrate communication and orientation organ. In: Bullock TH, Heiligenberg W, editors. Electroreception. New York: John Wiley and Sons. pp. 13–70.
[43]  Bennett MVL (1971) Electric organs. In: Hoar WS, Randall DJ, editors. Fish Physiology. New York: Academic Press. pp. 347–491.
[44]  Kirschbaum F (1977) Electric-organ ontogeny: distinct larval organ precedes adult organ in weakly electric fish. Naturwissenschaften 64: 387–388.
[45]  Kirschbaum F, Schwassmann HO (2008) Ontogeny and evolution of electric organs in gymnotiform fish. J Physiol-Paris 102: 347–356.
[46]  Szabo TH (1960) Development of the electric organ of Mormyridae. Nature 188: 760–762.
[47]  Zakon HH, Unguez GA (1999) Development and regeneration of the electric organ. J Exp Biol 202: 1427–1434.
[48]  Gibbs MA (2004) Lateral line receptors: where do they come from developmentally and where is our research going? Brain Behav Evol 64: 163–181.
[49]  Modrell MS, Bemis WE, Northcutt RG, Davis MC, Baker CVH (2011) Electrosensory ampullary organs are derived from lateral line placodes in bony fishes. Nat Commun 2: 496.
[50]  Modrell MS, Buckley D, Baker CVH (2011) Molecular analysis of neurogenic placode development in a basal ray-finned fish. Genesis 49: 278–294.
[51]  Zakon HH (1986) The electroreceptive periphery. In: Bullock TH, Heiligenberg W, editors. Electroreception. New York: John Wiley and Sons. pp. 103–156.
[52]  Zakon HH (1988) The electroreceptors: diversity in structure and function. In: Atema J, Fay RR, Popper AN, Tavolga WN, editors. Sensory Biology of Aquatic Animals. New York: Springer. pp. 813–850.
[53]  Monteiro A, Podlaha O (2009) Wings, horns, and butterfly eyespots: how do complex traits evolve? Plos Biol 7: e1000037.
[54]  Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457: 818–823.
[55]  Wagner GP, Lynch VJ (2010) Evolutionary novelties. Curr Biol 20: R48–R52.
[56]  Hopkins CD (1995) Convergent designs for electrogenesis and electroreception. Curr Opin Neurobiol 5: 769–777.
[57]  Nishikawa KC (2002) Evolutionary convergence in nervous systems: insights from comparative phylogenetic studies. Brain Behav Evol 59: 240–249.
[58]  Lissman HW (1958) On the function and evolution of electric organs in fish. J Exp Biol 35: 156–191.
[59]  Bell CC (1981) An efference copy which is modified by reafferent input. Science 214: 450–453.
[60]  Bell CC (1982) Properties of a modifiable efference copy in an electric fish. J Neurophysiol 47: 1043–1056.
[61]  Bell CC (2001) Memory-based expectations in electrosensory systems. Curr Opin Neurobiol 11: 481–487.
[62]  Bell CC (2002) Evolution of cerebellum-like structures. Brain Behav Evol 59: 312–326.
[63]  Bastian J (1995) Pyramidal-cell plasticity in weakly electric fish: a mechanism for attenuating responses to reafferent electrosensory inputs. J Comp Physiol A 176: 63–78.
[64]  Bastian J (1996) Plasticity in an electrosensory system. I. General features of a dynamic sensory filter. J Neurophysiol 76: 2483–2496.
[65]  Bastian J (1996) Plasticity in an electrosensory system. II. Postsynaptic events associated with a dynamic sensory filter. J Neurophysiol 76: 2497–2507.
[66]  Shirgaonkar AA, Curet OM, Patankar NA, MacIver MA (2008) The hydrodynamics of ribbon-fin propulsion during impulsive motion. J Exp Biol 211: 3490–3503.
[67]  Heiligenberg W (1974) Electrolocation and jamming avoidance in a Hypopygus (Rhamphichthyidae, Gymnotoidei), an electric fish with pulse-type discharges. J Comp Physiol 91: 223–240.
[68]  Hopkins CD (1999) Design features for electric communication. J Exp Biol 202: 1217–1228.
[69]  Stoddard PK (1999) Predation enhances complexity in the evolution of electric fish signals. Nature 400: 254–256.
[70]  Gayet M, Meunier FJ (1991) Première découverte de Gymnotiformes fossiles (Pisces, Ostariophysi) dans le Miocène supérieur de Bolivie. C R Acad Sci III 313: 471–476.
[71]  Gayet M, Meunier FJ (2000) Rectification of the nomenclature of the genus name Ellisella Gayet & Meunier, 1991 (Teleostei, Ostariophysi, Gymnotiformes) in Humboldtichthys nom. nov. Cybium 24: 104.
[72]  Murray AM, Cook TD, Attia YS, Chatrath P, Simons EL (2010) A freshwater ichthyofauna from the late Eocene Birket Qarun Formation, Fayum, Egypt. J Vert Paleontol 30: 665–680.
[73]  Greenwood PH (1959) Quaternary fish-fossils. Exploration du Parc National Albert, Mission J de Heinzelin de Braucourt (1950). Bruxels: Institut des Parcs Nationaux du Congo Belge. pp. 1–80.
[74]  Stewart KM (2009) Fossil fish from the Nile River and its southern basins. In: Dumont HJ, editor. The Nile: Origin, Environments, Limnology and Human Use: Springer Science + Business Media B.V. pp. 677–704.
[75]  Van Couvering JAH (1977) Early records of freshwater fishes in Africa. Copeia 1977: 163–166. pp. 163–166.
[76]  Briggs JC (1979) Ostariophysan zoogeography - alternative hypothesis. Copeia 1979: 111–118. pp. 111–118.
[77]  Lundberg JG (1993) African-South American freshwater fish clades and continental drift: problems with a paradigm. In: Goldblatt P, editor. Biological Relationships between Africa and South America. New Haven, CT, USA: Yale University Press. pp. 156–199.
[78]  Patterson C (1975) The distribution of Mesozoic freshwater fishes. Mem Mus Natl Hist Nat (Paris) 88: 155–174.
[79]  Gosline WA (1975) A reexamination of the similarities between the freshwater fishes of Africa and South America. Mem Mus Natl Hist Nat (Paris) 88: 146–154.
[80]  Li G-Q, Wilson MVH (1996) Phylogeny of Osteoglossomorpha. In: Stiassny MLJ, Parenti LR, Johnson GD, editors. Interrelationships of fishes. New York: Academic press. pp. 163–174.
[81]  Lawver LA, Dalziel IWD, Gahagan LM (2007) Plates 2006 - atlas of plate reconstructions (750Ma to present day). Austin: University of Texas, Institute for Geophysics.
[82]  Alves-Gomes JA (1999) Systematic biology of gymnotiform and mormyriform electric fishes: phylogenetic relationships, molecular clocks and rates of evolution in the mitochondrial rRNA genes. J Exp Biol 202: 1167–1183.
[83]  Kumazawa Y, Nishida M (2000) Molecular phylogeny of osteoglossoids: a new model for Gondwanian origin and plate tectonic transportation of the Asian arowana. Mol Biol Evol 17: 1869–1878.
[84]  Peng ZG, He SP, Wang J, Wang W, Diogo R (2006) Mitochondrial molecular clocks and the origin of the major Otocephalan clades (Pisces: Teleostei): a new insight. Gene 370: 113–124.
[85]  Nakatani M, Miya M, Mabuchi K, Saitoh K, Nishida M (2011) Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation. BMC Evol Biol 11: 177.
[86]  Inoue JG, Kumazawa Y, Miya M, Nishida M (2009) The historical biogeography of the freshwater knifefishes using mitogenomic approaches: A Mesozoic origin of the Asian notopterids (Actinopterygii: Osteoglossomorpha). Mol Phylogenet Evol 51: 486–499.
[87]  Lavoué S, Miya M, Arnegard ME, McIntyre PB, Mamonekene V, et al. (2011) Remarkable morphological stasis in an extant vertebrate despite tens of millions of years of divergence. Proc R Soc Lond [Biol] 278: 1003–1008.
[88]  Wilson MVH, Murray AM (2008) Osteoglossomorpha: phylogeny, biogeography, and fossil record and the significance of key African and Chinese fossil taxa. In: Cavin L, Longbottom A, Richter M, editors. Fishes and the Break-up of Pangaea. London: Geological Society, Special Publications v295. pp. 185–219.
[89]  Taverne L (1998) Les Ostéoglossomorphes marins de l’Eocène du Monte Bolca (Italie): Monopteros Volta 1796, Thrissopterus Heckel, 1856 et Foreyichthys Taverne, 1979. Considérations sur la phylogénie des téléostéens ostéoglossomorphes. Studi e Ricerche sui Giacimenti Terziari di Bolca, Miscellanea Paleontologica Vol 7. Verona: Museo Civico di Storia Naturale. pp. 67–158.
[90]  Lavoué S, Bigorne R, Lecointre G, Agnèse JF (2000) Phylogenetic relationships of mormyrid electric fishes (Mormyridae, Teleostei) inferred from cytochrome b sequences. Mol Phylogenet Evol 14: 1–10.
[91]  Taverne L (1972) Ostéologie des genres Mormyrus Linné, Mormyrops Müller, Hyperopisus Gill, Myomyrus Boulenger, Stomatorhinus Boulenger et Gymnarchus Cuvier. Considérations générales sur la systématique des poissons de l’ordre des Mormyriformes. Ann Musee Roy Afr Centr Ser 8 Sci Zool 200: 1–194.
[92]  Wiley EO, Johnson GD (2010) A teleost classification based on monophyletic groups. In: Nelson JS, Schultze HP, Wilson MVH, editors. Origin and Phylogenetic Interrelationships of Teleosts. München: Verlag Dr. Friedrich Pfeil. pp. 123–182.
[93]  Cavin L, Longbottom A, Richter M, editors. (2008) Fishes and the break-up of Pangaea. London: The Geological Society, Special Publication. 396 p.
[94]  Patterson C (1993) Osteichthyes Teleostei. In: Benton MJ, editor. The fossil record. London: Chapman, et al. pp. 621–656.
[95]  Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M, et al. (2007) A new time-scale for ray-finned fish evolution. Proc R Soc Lond [Biol] 274: 489–498.
[96]  Yamanoue Y, Miya M, Inoue JG, Matsuura K, Nishida M (2006) The mitochondrial genome of spotted green pufferfish Tetraodon nigroviridis (Teleostei: Tetraodontiformes) and divergence time estimation among model organisms in fishes. Genes Genet Syst 81: 29–39.
[97]  Lynch M, Katju V (2004) The altered evolutionary trajectories of gene duplicates. TIG 20: 544–549.
[98]  Ohno S (1970) Evolution by gene duplication. New York: Springer-Verlag. 160 p.
[99]  Zhang JZ (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18: 292–298.
[100]  Taylor JS, Raes J (2004) Duplication and divergence: The evolution of new genes and old ideas. Annu Rev Genet 38: 615–643.
[101]  Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59: 190–203.
[102]  Sato Y, Nishida M (2010) Teleost fish with specific genome duplication as unique models of vertebrate evolution. Environ Biol Fishes 88: 169–188.
[103]  Novak AE, Jost MC, Lu Y, Taylor AD, Zakon HH, et al. (2006) Gene duplications and evolution of vertebrate voltage-gated sodium channels. J Mol Evol 63: 208–221.
[104]  Caputi AA, Carlson BA, Macadar O (2005) Electric organs and their control. In: Bullock TH, Hopkins CD, Popper AN, Fay RR, editors. Electroreception. New York: Springer Science+Business Media, Inc. pp. 410–451.
[105]  Briggs JC (2005) The biogeography of otophysan fishes (Ostariophysi: Otophysi): a new appraisal. J Biogeography 32: 287–294.
[106]  Li G-Q (1997) Notes on the historical biogeography of the Osteoglossomorpha (Teleostei). In: Jin Y-G, Dineley D, editors. Proc 30th Intern Geol Congr Vol 12, Palaeontol Hist Geol. Zeist: VSP BV. pp. 54–66.
[107]  Lundberg JG, Sullivan JP, Rodiles-Hernandez R, Hendrickson DA (2007) Discovery of African roots for the Mesoamerican Chiapas catfish, Lacantunia enigmatica, requires an ancient intercontinental passage. P Acad Nat Sci Phila 156: 39–53.
[108]  Sullivan JP, Lundberg JG, Hardman M (2006) A phylogenetic analysis of the major groups of catfishes (Teleostei : Siluriformes) using rag1 and rag2 nuclear gene sequences. Mol Phylogenet Evol 41: 636–662.
[109]  Barron EJ (1987) Cretaceous plate tectonic reconstructions. Palaeogeog Palaeoclim Palaeoecol 59: 3–29.
[110]  Scotese CR, Gahagan LM, Larson RL (1988) Plate tectonic reconstructions of the Cretaceous and Cenozoic ocean basins. Tectonophysics 155: 27–48.
[111]  Smith AG, Smith DG, Funnell M (1994) Atlas of mesozoic and cenozoic coastlines. Cambridge: Cambridge University Press. pp. 1–99.
[112]  Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235: 1156–1167.
[113]  Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, et al. (2005) The phanerozoic record of global sea-level change. Science 310: 1293–1298.
[114]  Jacobs LL, Mateus O, Polcyn MJ, Schulp AS, Scotese CR, et al. (2009) Cretaceous paleogeography, paleoclimatology, and amniote biogeography of the low and mid-latitude South Atlantic Ocean. B Soc Geol Fr 180: 333–341.
[115]  Maisey JG (2000) Continental break up and the distribution of fishes of Western Gondwana during the Early Cretaceous. Cretaceous Res 21: 281–314.
[116]  Fink SV, Fink WL (1981) Interrelationships of the ostariophysan fishes (Teleostei). J Linnean Soc [Zool] 72: 297–353.
[117]  DeVaney SC (2008) The interrelationships of fishes of the order Stomiiformes. Lawrence: University of Kansas. pp. 1–233.
[118]  Kawaguchi M, Hiroi J, Miya M, Nishida M, Iuchi I, et al. (2010) Intron-loss evolution of hatching enzyme genes in Teleostei. BMC Evol Biol 10: e260.
[119]  Lavoué S, Miya M, Inoue JG, Saitoh K, Ishiguro N, et al. (2005) Molecular systematics of the gonorynchiform fishes (Teleostei) based on whole mitogenome sequences: implications for higher-level relationships within the Otocephala. Mol Phylogenet Evol 37: 165–177.
[120]  Li CH, Lu GQ, Ortí G (2008) Optimal data partitioning and a test case for ray-finned fishes (Actinopterygii) based on ten nuclear loci. Syst Biol 57: 519–539.
[121]  Li J, Xia R, McDowall RM, Lopez JA, Lei GC, et al. (2010) Phylogenetic position of the enigmatic Lepidogalaxias salamandroides with comment on the orders of lower euteleostean fishes. Mol Phylogenet Evol 57: 932–936.
[122]  Santini F, Harmon LJ, Carnevale G, Alfaro ME (2009) Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evol Biol 9: e194.
[123]  Dimmick WW, Larson A (1996) A molecular and morphological perspective on the phylogenetic relationships of the otophysan fishes. Mol Phylogenet Evol 6: 120–133.
[124]  Peng ZG, Wang J, He SP (2006) The complete mitochondrial genome of the helmet catfish Cranoglanis bouderius (Siluriformes : Cranoglanididae) and the phylogeny of otophysan fishes. Gene 376: 290–297.
[125]  Saitoh K, Miya M, Inoue JG, Ishiguro NB, Nishida M (2003) Mitochondrial genomics of ostariophysan fishes: perspectives on phylogeny and biogeography. J Mol Evol 56: 464–472.
[126]  Ortí G, Meyer A (1996) Molecular evolution of ependymin and the phylogenetic resolution of early divergences among euteleost fishes. Mol Biol Evol 13: 556–573.
[127]  Ortí G, Meyer A (1997) The radiation of characiform fishes and the limits of resolution of mitochondrial ribosomal DNA sequences. Syst Biol 46: 75–100.
[128]  Budd GE (2001) Why are arthropods segmented? Evol Dev 3: 332–342.
[129]  L?ytynoja A, Milinkovitch MC (2003) A hidden Markov model for progressive multiple alignment. Bioinformatics 19: 1505–1513.
[130]  Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.
[131]  Silvestro D, Michalak I (2011) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol in press. DOI 10.1007/s13127–011–0056–0.
[132]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.
[133]  Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39: 306–314.
[134]  Yang Z (2006) Computational molecular evolution. Oxford: Oxford University Press. 376 p.
[135]  Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: e214.
[136]  Brandley MC, Wang YZ, Guo XG, de Oca ANM, Ferìa-Ortìz M, et al. (2011) Accommodating heterogenous rates of evolution in molecular divergence dating methods: An example using intercontinental dispersal of Plestiodon (Eumeces) lizards. Syst Biol 60: 3–15.
[137]  Lukoschek V, Keogh JS, Avise JC (2012) Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches. Syst Biol 61: 22–43.
[138]  Phillips MJ (2009) Branch-length estimation bias misleads molecular dating for a vertebrate mitochondrial phylogeny. Gene 441: 132–140.
[139]  Benton MJ, Donoghue PCJ, Asher RJ (2009) Calibrating and constraining molecular clocks. In: Hedges SB, Kumar S, editors. The Timetree of Life. Oxford: Oxford University Press. pp. 35–86.
[140]  Nelson JS (2006) Fishes of the World. New York: John Wiley and Sons. 601 p.
[141]  Gardiner BG, Schaeffert B, Masserie JA (2005) A review of the lower actinopterygian phylogeny. Zool J Linnean Soc 144: 511–525.
[142]  Lavoué S, Miya M, Poulsen JY, Moller PR, Nishida M (2008) Monophyly, phylogenetic position and inter-familial relationships of the Alepocephaliformes (Teleostei) based on whole mitogenome sequences. Mol Phylogenet Evol 47: 1111–1121.
[143]  Heimberg AM, Cowper-Sallari R, Semon M, Donoghue PCJ, Peterson KJ (2010) microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci, USA 107: 19379–19383.
[144]  Kikugawa K, Katoh K, Sakurai H, Ishida O, Iwabe N, et al. (2004) Basal jawed vertebrate phylogeny inferred from multiple nuclear DNA-coded genes. BMC Biol 2: e3.
[145]  Takezaki N, Figueroa F, Zaleska-Rutczynska Z, Takahata N, Klein J (2004) The phylogenetic relationship of tetrapod, coelacanth, and lungfish revealed by the sequences of forty-four nuclear genes. Mol Biol Evol 21: 1512–1524.
[146]  Andres KH, von Düring M, Petrasch E (1988) The fine structure of ampullary and tuberous electroreceptors in the South American blind catfish Pseudocetopsis spec. Anat Embryol (Berl) 177: 523–535.
[147]  Czech-Damal NU, Liebschner A, Miersch L, Klauer G, Hanke FD, et al. (2011) Electroreception in the Guiana dolphin (Sotalia guianensis). Proc R Soc Lond [Biol] published online ahead of print, 27 July 2011.
[148]  Forey PL (1997) A Cretaceous notopterid (Pisces: Osteoglossomorpha) from Morocco. South African J Sci 93: 564–569.


comments powered by Disqus