全部 标题 作者
关键词 摘要

PLOS ONE  2012 

BC4707 Is a Major Facilitator Superfamily Multidrug Resistance Transport Protein from Bacillus cereus Implicated in Fluoroquinolone Tolerance

DOI: 10.1371/journal.pone.0036720

Full-Text   Cite this paper   Add to My Lib


Transcriptional profiling highlighted a subset of genes encoding putative multidrug transporters in the pathogen Bacillus cereus that were up-regulated during stress produced by bile salts. One of these multidrug transporters (BC4707) was selected for investigation. Functional characterization of the BC4707 protein in Escherichia coli revealed a role in the energized efflux of xenobiotics. Phenotypic analyses after inactivation of the gene bc4707 in Bacillus cereus ATCC14579 suggested a more specific, but modest role in the efflux of norfloxacin. In addition to this, transcriptional analyses showed that BC4707 is also expressed during growth of B. cereus under non-stressful conditions where it may have a role in the normal physiology of the bacteria. Altogether, the results indicate that bc4707, which is part of the core genome of the B. cereus group of bacteria, encodes a multidrug resistance efflux protein that is likely involved in maintaining intracellular homeostasis during growth of the bacteria.


[1]  Kolsto AB, Tourasse NJ, Okstad OA (2009) What sets Bacillus anthracis apart from other Bacillus species? Annu Rev Microbiol 63: 451–476.
[2]  Mock M, Fouet A (2001) Anthrax. Annu Rev Microbiol 55: 647–671.
[3]  Jernigan JA, Stephens DS, Ashford DA, Omenaca C, Topiel MS, et al. (2001) Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 7: 933–944.
[4]  Bottone EJ (2010) Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 23: 382–398.
[5]  Drobniewski FA (1993) Bacillus cereus and related species. Clin Microbiol Rev 6: 324–338.
[6]  Kotiranta A, Lounatmaa K, Haapasalo M (2000) Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2: 189–198.
[7]  von Stetten F, Mayr R, Scherer S (1999) Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis populations in tropical, temperate and alpine soil. Environ Microbiol 1: 503–515.
[8]  Turnbull PC, Kramer JM (1985) Intestinal carriage of Bacillus cereus: faecal isolation studies in three population groups. J Hyg (Lond) 95: 629–638.
[9]  Ghosh AC (1978) Prevalence of Bacillus cereus in the faeces of healthy adults. J Hyg (Lond) 80: 233–236.
[10]  Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7: 1673–1685.
[11]  Jensen GB, Hansen BM, Eilenberg J, Mahillon J (2003) The hidden lifestyles of Bacillus cereus and relatives. Environ Microbiol 5: 631–640.
[12]  Ren Q, Chen K, Paulsen IT (2007) TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic acids res 35: D274–279.
[13]  Ren Q, Paulsen IT (2007) Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes. J mol microbiol biotechnol 12: 165–179.
[14]  Li XZ, Nikaido H (2004) Efflux-mediated drug resistance in bacteria. Drugs 64: 159–204.
[15]  Poole K (2005) Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56: 20–51.
[16]  Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39: 162–176.
[17]  Piddock LJ (2006) Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol 4: 629–636.
[18]  Krulwich TA, Lewinson O, Padan E, Bibi E (2005) Do physiological roles foster persistence of drug/multidrug-efflux transporters? A case study. Nat Rev Microbiol 3: 566–572.
[19]  Neyfakh AA (1997) Natural functions of bacterial multidrug transporters. Trends Microbiol 5: 309–313.
[20]  Saier MH Jr, Paulsen IT (2001) Phylogeny of multidrug transporters. Semin Cell Dev Biol 12: 205–213.
[21]  Kristoffersen SM, Ravnum S, Tourasse NJ, Okstad OA, Kolsto AB, et al. (2007) Low concentrations of bile salts induce stress responses and reduce motility in Bacillus cereus ATCC 14579 [corrected]. J Bacteriol 189: 5302–5313.
[22]  Mols M, van Kranenburg R, Tempelaars MH, van Schaik W, Moezelaar R, et al. (2010) Comparative analysis of transcriptional and physiological responses of Bacillus cereus to organic and inorganic acid shocks. Int J Food Microbiol 137: 13–21.
[23]  Chan YY, Bian HS, Tan TM, Mattmann ME, Geske GD, et al. (2007) Control of quorum sensing by a Burkholderia pseudomallei multidrug efflux pump. J Bacteriol 189: 4320–4324.
[24]  Zhang Y, Xiao M, Horiyama T, Zhang Y, Li X, et al. The multidrug efflux pump MdtEF protects against nitrosative damage during the anaerobic respiration in Escherichia coli. J Biol Chem 286: 26576–6584.
[25]  Ramon-Garcia S, Martin C, Thompson CJ, Ainsa JA (2009) Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth. Antimicrob Agents Chemother 53: 3675–3682.
[26]  Szakonyi G, Leng D, Ma P, Bettaney KE, Saidijam M, et al. (2007) A genomic strategy for cloning, expressing and purifying efflux proteins of the major facilitator superfamily. J Antimicrob Chemother 59: 1265–1270.
[27]  Findlay HE, Rutherford NG, Henderson PJ, Booth PJ (2010) Unfolding free energy of a two-domain transmembrane sugar transport protein. Proc Natl Acad Sci U S A 107: 18451–18456.
[28]  Ward A, Hoyle C, Palmer S, O'Reilly J, Griffith J, et al. (2001) Prokaryote multidrug efflux proteins of the major facilitator superfamily: amplified expression, purification and characterisation. J Mol Microbiol Biotechnol 3: 193–200.
[29]  Structural Genomics C, China Structural Genomics C, Northeast Structural Genomics C, Graslund S, Nordlund P, et al. (2008) Protein production and purification. Nature Methods 5: 135–146.
[30]  Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N, et al. (2001) Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother 45: 1126–1136.
[31]  Okusu H, Ma D, Nikaido H (1996) AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 178: 306–308.
[32]  Nakamura H (1965) Gene-Controlled Resistance to Acriflavine and Other Basic Dyes in Escherichia coli. J Bacteriol 90: 8–14.
[33]  Nakamura H (1968) Genetic determination of resistance to acriflavine, phenethyl alcohol, and sodium dodecyl sulfate in Escherichia coli. J Bacteriol 96: 987–996.
[34]  Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, et al. (1998) NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 42: 1778–1782.
[35]  Chen J, Morita Y, Huda MN, Kuroda T, Mizushima T, et al. (2002) VmrA, a member of a novel class of Na(+)-coupled multidrug efflux pumps from Vibrio parahaemolyticus. J Bacteriol 184: 572–576.
[36]  Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62: 1–34.
[37]  Goldsby RA, Heytler PG (1963) Uncoupling of Oxidative Phosphorylation by Carbonyl Cyanide Phenylhydrazones. Ii. Effects of Carbonyl Cyanide M-Chlorophenylhydrazone on Mitochondrial Respiration. Biochemistry 2: 1142–1147.
[38]  Heytler PG (1963) uncoupling of oxidative phosphorylation by carbonyl cyanide phenylhydrazones. I. Some characteristics of m-Cl-CCP action on mitochondria and chloroplasts. Biochemistry 2: 357–361.
[39]  Cavari BZ, Avi-Dor Y (1967) Effect of carbonyl cyanide m-chlorophenylhydrazone on respiration and respiration-dependent phosphorylation in Escherichia coli. Biochem J 103: 601–608.
[40]  Reiter L, Kolsto AB, Piehler AP (2011) Reference genes for quantitative, reverse-transcription PCR in Bacillus cereus group strains throughout the bacterial life cycle. J Microbiol Methods 86: 210–217.
[41]  Serizawa M, Sekizuka T, Okutani A, Banno S, Sata T, et al. (2010) Genomewide screening for novel genetic variations associated with ciprofloxacin resistance in Bacillus anthracis. Antimicrob Agents Chemother 54: 2787–2792.
[42]  Inglesby TV, O'Toole T, Henderson DA, Bartlett JG, Ascher MS, et al. (2002) Anthrax as a biological weapon, 2002: updated recommendations for management. JAMA 287: 2236–2252.
[43]  Swartz MN (2001) Recognition and management of anthrax–an update. N Engl J Med 345: 1621–1626.
[44]  Piddock LJ (2006) Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19: 382–402.
[45]  Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645.
[46]  Janes BK, Stibitz S (2006) Routine markerless gene replacement in Bacillus anthracis. Infect Immun 74: 1949–1953.
[47]  Ward A, Sanderson NM, O'Reilly J, Rutherford NG, Poolman B, et al. (2000) The amplified expression, identification, purification, assay and properties of histidine-tagged bacterial membrane transport proteins. In: Baldwin S, editor. Membrane Transport - a Practical Approach. Oxford: Blackwell's Press. pp. 141–166.
[48]  Gohar M, Faegri K, Perchat S, Ravnum S, Okstad OA, et al. (2008) The PlcR virulence regulon of Bacillus cereus. PLoS One 3: e2793.
[49]  Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome biology 5: R80.
[50]  Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman VC R, Dudoit S, Irizarry R, Huber W, editors. pp. 397–420. Bioinformatics and Computational Biology Solutions using R and Bioconductor: Springer.
[51]  Mols M, de Been M, Zwietering MH, Moezelaar R, Abee T (2007) Metabolic capacity of Bacillus cereus strains ATCC 14579 and ATCC 10987 interlinked with comparative genomics. Environ Microbiol 9: 2933–2944.


comments powered by Disqus