All Title Author
Keywords Abstract

A Surface Groove Essential for Viral Bcl-2 Function During Chronic Infection In Vivo

DOI: 10.1371/journal.ppat.0010010

Full-Text   Cite this paper   Add to My Lib


Antiapoptotic Bcl-2 family proteins inhibit apoptosis in cultured cells by binding BH3 domains of proapoptotic Bcl-2 family members via a hydrophobic BH3 binding groove on the protein surface. We investigated the physiological importance of the BH3 binding groove of an antiapoptotic Bcl-2 protein in mammals in vivo by analyzing a viral Bcl-2 family protein. We show that the γ-herpesvirus 68 (γHV68) Bcl-2 family protein (γHV68 v-Bcl-2), which is known to inhibit apoptosis in cultured cells, inhibits both apoptosis in primary lymphocytes and Bax toxicity in yeast. Nuclear magnetic resonance determination of the γHV68 v-Bcl-2 structure revealed a BH3 binding groove that binds BH3 domain peptides from proapoptotic Bcl-2 family members Bax and Bak via a molecular mechanism shared with host Bcl-2 family proteins, involving a conserved arginine in the BH3 peptide binding groove. Mutations of this conserved arginine and two adjacent amino acids to alanine (SGR to AAA) within the BH3 binding groove resulted in a properly folded protein that lacked the capacity of the wild-type γHV68 v-Bcl-2 to bind Bax BH3 peptide and to block Bax toxicity in yeast. We tested the physiological importance of this v-Bcl-2 domain during viral infection by engineering viral mutants encoding a v-Bcl-2 containing the SGR to AAA mutation. This mutation resulted in a virus defective for both efficient reactivation of γHV68 from latency and efficient persistent γHV68 replication. These studies demonstrate an essential functional role for amino acids in the BH3 peptide binding groove of a viral Bcl-2 family member during chronic infection.


[1]  Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ (2004) Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 23: 1207–1216.
[2]  Petros AM, Olejniczak ET, Fesik SW (2004) Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 1644: 83–94.
[3]  Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: Roles in cell survival and oncogenesis. Oncogene 22: 8590–8607.
[4]  Danial NN, Korsmeyer SJ (2004) Cell death: Critical control points. Cell 116: 205–219.
[5]  Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, et al. (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424: 952–956.
[6]  Hardwick JM, Bellows DS (2003) Viral versus cellular BCL-2 proteins. Cell Death Differ 10: S68–S76.
[7]  Cuconati A, White E (2002) Viral homologs of BCL-2: Role of apoptosis in the regulation of virus infection. Genes Dev 16: 2465–2478.
[8]  Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, et al. (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2: 183–192.
[9]  Huang Q, Petros AM, Virgin HW, Fesik SW, Olejniczak ET (2002) Solution structure of a Bcl-2 homolog from Kaposi sarcoma virus. Proc Natl Acad Sci U S A 99: 3428–3433.
[10]  Huang Q, Petros AM, Virgin HW, Fesik SW, Olejniczak ET (2003) Solution structure of the BHRF1 protein from Epstein-Barr virus, a homolog of human Bcl-2. J Mol Biol 332: 1123–1130.
[11]  Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, et al. (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381: 335–341.
[12]  Petros AM, Medek A, Nettesheim DG, Kim DH, Yoon HS, et al. (2001) Solution structure of the antiapoptotic protein bcl-2. Proc Natl Acad Sci U S A 98: 3012–3017.
[13]  Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, et al. (1997) Structure of Bcl-xL-Bak peptide complex: Recognition between regulators of apoptosis. Science 275: 983–986.
[14]  Parrish J, Metters H, Chen L, Xue D (2000) Demonstration of the in vivo interaction of key cell death regulators by structure-based design of second-site suppressors. Proc Natl Acad Sci U S A 97: 11916–11921.
[15]  del Peso L, Gonzalez VM, Inohara N, Ellis RE, Nunez G (2000) Disruption of the CED-9 center dot CED-4 complex by EGL-1 is a critical step for programmed cell death in Caenorhabditis elegans. J Biol Chem 275: 27205–27211.
[16]  Li W, Kedersha N, Chen S, Gilks N, Lee G, et al. (2004) FAST is a BCL-X-L-associated mitochondrial protein. Biochem Biophys Res Commun 318: 95–102.
[17]  Rodolfo C, Mormone E, Matarrese P, Ciccosanti F, Farrace MG, et al. (2004) Tissue transglutaminase is a multifunctional BH3-only protein. J Biol Chem 279: 54783–54792.
[18]  Kasof GM, Goyal L, White E (1999) Btf, a novel death-promoting transcriptional repressor that interacts with Bcl-2-related proteins. Mol Cell Biol 19: 4390–4404.
[19]  Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, et al. (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11: 577–590.
[20]  Wang HG, Rapp UR, Reed JC (1996) Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87: 629–638.
[21]  Chau BN, Cheng EH, Kerr DA, Hardwick JM (2000) Aven, a novel inhibitor of caspase activation, binds Bcl-xL and Apaf-1. Mol Cell 6: 31–40.
[22]  Pan G, O'Rourke K, Dixit VM (1998) Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem 273: 5841–5845.
[23]  Shibasaki F, Kondo E, Akagi T, McKeon F (1997) Suppression of signalling through transcription factor NF-AT by interactions between calcineurin and Bcl-2. Nature 386: 728–731.
[24]  Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, et al. (1998) Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 72: 8586–8596.
[25]  Reed JC (1998) Bcl-2 family proteins. Oncogene 17: 3225–3236.
[26]  Hu Y, Benedict MA, Wu D, Inohara N, Nunez G (1998) Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci U S A 95: 4386–4391.
[27]  Polster BM, Pevsner J, Hardwick JM (2004) Viral Bcl-2 homologs and their role in virus replication and associated diseases. Biochim Biophys Acta 1644: 211–227.
[28]  Benedict CA, Norris PS, Ware CF (2002) To kill or be killed: Viral evasion of apoptosis. Nat Immunol 3: 1013–1018.
[29]  Sunil-Chandra NP, Efstathiou S, Nash AA (1992) Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J Gen Virol 73: 3275–3279.
[30]  Flano E, Husain SM, Sample JT, Woodland DL, Blackman MA (2000) Latent murine gamma-herpesvirus infection is established in activated B cells, dendritic cells, and macrophages. J Immunol 165: 1074–1081.
[31]  Weck KE, Kim SS, Virgin HW, Speck SH (1999) Macrophages are the major reservoir of latent murine gammaherpesvirus 68 in peritoneal cells. J Virol 73: 3273–3283.
[32]  Sunil- Chandra NP, Arno J, Fazakerley J, Nash AA (1994) Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am J Pathol 145: 818–826.
[33]  Grundhoff A, Ganem D (2004) Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J Clin Invest 113: 124–136.
[34]  Kieff E, Rickinson AB (2001) Epstein-Barr virus and its replication. In: Knipe DM, Howley P, editors. Fields virology, 4th ed. Hagerstown (Maryland): Lippincott Williams and Wilkins. pp. 2511–2573. pp.
[35]  Rickinson AB, Kieff E (2001) Epstein-Barr virus. In: Knipe DM, Howley P, editors. Fields virology, 4th ed. Hagerstown (Maryland): Lippincott Williams and Wilkins. pp. 2575–2627. pp.
[36]  Gangappa S, Van Dyk LF, Jewett TJ, Speck SH, Virgin HW (2002) Identification of the in vivo role of a viral bcl-2. J Exp Med 195: 931–940.
[37]  Bellows DS, Chau BN, Lee P, Lazebnik Y, Burns WH, et al. (2000) Antiapoptotic herpesvirus bcl-2 homologs escape caspase-mediated conversion to proapoptotic proteins. J Virol 74: 5024–5031.
[38]  Roy DJ, Ebrahimi BC, Dutia BM, Nash AA, Stewart JP (2000) Murine gammaherpesvirus M11 gene product inhibits apoptosis and is expressed during virus persistence. Arch Virol 145: 2411–2420.
[39]  Wang GH, Garvey TL, Cohen JI (1999) The murine gammaherpesvirus-68 M11 protein inhibits Fas- and TNF- induced apoptosis. J Gen Virol 80: 2737–2740.
[40]  Virgin HW, Presti RM, Li X-Y, Liu C, Speck SH (1999) Three distinct regions of the murine gammaherpesvirus 68 genome are transcriptionally active in latently infected mice. J Virol 73: 2321–2332.
[41]  de Lima BD, May JS, Marques S, Simas JP, Stevenson PG (2004) Murine gammaherpesviruis 68 bcl-2 homologue contributes to latency establishment in vivo. J Gen Virol 86: 31–40.
[42]  Tibbetts SA, Van Dyk L, Speck SH, Virgin HW (2002) Immune control of the number and reactivation phenotype of cells latently infected with a gamma-herpesvirus. J Virol 76: 7125–7132.
[43]  Loh J, Thomas DA, Revell PA, Ley TJ, Virgin HW (2004) Granzymes and caspase 3 play important roles in control of gammaherpesvirus latency. J Virol 78: 12519–12528.
[44]  Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ (1991) Bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67: 879–888.
[45]  Chao DT, Linette GP, Boise LH, White LS, Thompson CB, et al. (1995) Bcl-XL and Bcl-2 repress a common pathway of cell death. J Exp Med 182: 821–828.
[46]  Cohen JJ, Duke RC (1984) Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol 132: 38–42.
[47]  Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284: 555–556.
[48]  Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, et al. (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 849–852.
[49]  Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849.
[50]  Shi YF, Bissonnette RP, Parfrey N, Szalay M, Kubo RT, et al. (1991) In vivo administration of monoclonal antibodies to the CD3 T cell receptor complex induces cell death (apoptosis) in immature thymocytes. J Immunol 146: 3340–3346.
[51]  Smith CA, Williams GT, Kingston R, Jenkinson EJ, Owen JJ (1989) Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature 337: 181–184.
[52]  Strasser A, Harris AW, Cory S (1991) Bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67: 889–899.
[53]  Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, et al. (1997) Structure of Bcl-x(L)-Bak peptide complex: Recognition between regulators of apoptosis. Science 275: 983–986.
[54]  Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, et al. (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278: 1966–1968.
[55]  Chittenden T, Flemington C, Houghton AB, Ebb RG, Gallo GJ, et al. (1995) A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J 14: 5589–5596.
[56]  Petros AM, Nettesheim DG, Wang Y, Olejniczak ET, Meadows RP, et al. (2000) Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci 9: 2528–2534.
[57]  Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, et al. (2001) BCL-2, BCLXL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8: 705–711.
[58]  Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, et al. (2001) Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 292: 727–730.
[59]  Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB (2001) BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15: 1481–1486.
[60]  Jurgensmeier JM, Krajewski S, Armstrong RC, Wilson GM, Oltersdorf T, et al. (1997) Bax- and Bak-induced cell death in the fission yeast Schizosaccharomyces pombe. Mol Biol Cell 8: 325–339.
[61]  Zha HB, Fisk HA, Yaffe MP, Mahajan N, Herman B, et al. (1996) Structure-function comparisons of the proapoptotic protein Bax in yeast and mammalian cells. Mol Cell Biol 16: 6494–6508.
[62]  Minn AJ, Kettlun CS, Liang H, Kelekar A, Vander Heiden MG, et al. (1999) Bcl-x(L) regulates apoptosis by heterodimerization-dependent and -independent mechanisms. EMBO J 18: 632–643.
[63]  Hanada M, Aime-Sempe C, Sato T, Reed JC (1995) Structure-function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J Biol Chem 270: 11962–11969.
[64]  Yin XM, Oltvai ZN, Korsmeyer SJ (1994) BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369: 321–323.
[65]  Cheng EH, Levine B, Boise LH, Thompson CB, Hardwick JM (1996) Bax-independent inhibition of apoptosis by Bcl-XL. Nature 379: 554–556.
[66]  Bodaghi B, Jones TR, Zipeto D, Vita C, Sun L, et al. (1998) Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188: 855–866.
[67]  Patterson CE, Shenk T (1999) Human cytomegalovirus UL36 protein is dispensable for viral replication in cultured cells. J Virol 73: 7126–7131.
[68]  Penfold ME, Dairaghi DJ, Duke GM, Saederup N, et al. (1999) Cytomegalovirus encodes a potent alpha chemokine. Proc Natl Acad Sci U S A 96: 9839–9844.
[69]  Sarawar SR, Cardin RD, Brooks JW, Mehrpooya M, Hamilton-Easton AM, et al. (1997) Gamma interferon is not essential for recovery from acute infection with murine gammaherpesvirus 68. J Virol 71: 3916–3921.
[70]  Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC, et al. (2003) Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426: 671–676.
[71]  Day CL, Chen L, Richardson SJ, Harrison PJ, Huang DCS, et al. (2004) Solution structure of pro-survival Mcl-1 and characterization of its binding by pro-apoptotic BH3-only ligands. J Biol Chem 280: 4738–4744.
[72]  Han J, Modha D, White E (1998) Interaction of E1B 19K with Bax is required to block Bax-induced loss of mitochondrial membrane potential and apoptosis. Oncogene 17: 2993–3005.
[73]  Cuconati A, Degenhardt K, Sundararajan R, Anschel A, White E (2002) Bak and Bax function to limit adenovirus replication through apoptosis induction. J Virol 76: 4547–4558.
[74]  Clem RJ, Cheng EH, Karp CL, Kirsch DG, Ueno K, et al. (1998) Modulation of cell death by Bcl-XL through caspase interaction. Proc Natl Acad Sci U S A 95: 554–559.
[75]  Ojala PM, Tiainen M, Salven P, Veikkola T, Castanos-Velez E, et al. (1999) Kaposi's sarcoma-associated herpesvirus-encoded v-cyclin triggers apoptosis in cells with high levels of cyclin-dependent kinase 6. Cancer Res 59: 4984–4989.
[76]  Ojala PM, Yamamoto K, Castanos-Velez E, Biberfeld P, Korsmeyer SJ, et al. (2000) The apoptotic v-cyclin-CDK6 complex phosphorylates and inactivates Bcl-2. Nat Cell Biol 2: 819–825.
[77]  Van Dyk LF, Hess JL, Katz JD, Jacoby M, Speck SH, et al. (1999) The murine gammaherpesvirus 68 v-cyclin is an oncogene that promotes cell cycle progression in primary lymphocytes. J Virol 73: 5110–5122.
[78]  Chaffin KE, Beals CR, Wilkie TM, Forbush KA, Simon MI, et al. (1990) Dissection of thymocyte signaling pathways by in vivo expression of pertussis toxin ADP-ribosyltransferase. EMBO J 9: 3821–3829.
[79]  Garvin AM, Abraham KM, Forbush KA, Farr AG, Davison BL, et al. (1990) Disruption of thymocyte development and lymphomagenesis induced by SV40 T-antigen. Int Immunol 2: 173–180.
[80]  Morrison TB, Weis JJ, Wittwer CT (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. BioTechniques 24: 954–958. Additional pages: 960-962.
[81]  Van Dyk LF, Virgin HW, Speck SH (2000) The murine gammaherpesvirus 68 v-cyclin is a critical regulator of reactivation from latency. J Virol 74: 7451–7461.
[82]  Weck KE, Barkon ML, Yoo LI, Speck SH, Virgin HW (1996) Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. J Virol 70: 6775–6780.
[83]  Weck KE, Kim SS, Virgin HW, Speck SH (1999) B cells regulate murine gammaherpesvirus 68 latency. J Virol 73: 4651–4661.
[84]  Yamazaki T, Lee W, Arrowsmith CH, Muhandiram DR, Kay LE (1994) A suite of triple-resonance NMR experiments for the backbone assignment of N-15, C-13, H-2 labeled proteins with high-sensitivity. J Am Chem Soc 116: 11655–11666.
[85]  Muhandiram DR, Kay LE (1994) Gradient-enhanced triple-resonance 3-dimensional NMR experiments with improved sensitivity. J Magn Reson Series B 103: 203–216.
[86]  Clore GM, Gronenborn AM (1994) Multidimensional heteronuclear nuclear-magnetic-resonance of proteins. Methods Enzymol 239: 349–363.
[87]  Neri D, Szyperski T, Otting G, Senn H, Wuthrich K (1989) Stereospecific nuclear magnetic-resonance assignments of the methyl-groups of valine and leucine in the DNA-binding domain of the 434-repressor by biosynthetically directed fractional C-13 labeling. Biochemistry 28: 7510–7516.
[88]  Fesik SW, Zuiderweg ERP (1988) Heteronuclear 3-dimensional NMR-spectroscopy—A strategy for the simplification of homonuclear two-dimensional NMR-spectra. J Magn Reson 78: 588–593.
[89]  Ikura M, Kay LE, Tschudin R, Bax A (1990) 3-Dimensional NOESY-HMQC spectroscopy of a C-13-labeled protein. J Magn Reson 86: 204–209.
[90]  Brunger AT (1992) X-PLOR, version 3.1 [computer program]. New Haven and London: Yale University Press.
[91]  Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13: 289–302.
[92]  Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) Procheck—A program to check the stereochemical quality of protein structures. J Appl Cryst 26: 283–291.
[93]  Hajduk PJ, Augeri DJ, Mack J, Mendoza R, Yang JG, et al. (2000) NMR-based screening of proteins containing C-13-labeled methyl groups. J Am Chem Soc 122: 7898–7904.


comments powered by Disqus