All Title Author
Keywords Abstract

The Urokinase Receptor (uPAR) Facilitates Clearance of Borrelia burgdorferi

DOI: 10.1371/journal.ppat.1000447

Full-Text   Cite this paper   Add to My Lib


The causative agent of Lyme borreliosis, the spirochete Borrelia burgdorferi, has been shown to induce expression of the urokinase receptor (uPAR); however, the role of uPAR in the immune response against Borrelia has never been investigated. uPAR not only acts as a proteinase receptor, but can also, dependently or independently of ligation to uPA, directly affect leukocyte function. We here demonstrate that uPAR is upregulated on murine and human leukocytes upon exposure to B. burgdorferi both in vitro as well as in vivo. Notably, B. burgdorferi-inoculated C57BL/6 uPAR knock-out mice harbored significantly higher Borrelia numbers compared to WT controls. This was associated with impaired phagocytotic capacity of B. burgdorferi by uPAR knock-out leukocytes in vitro. B. burgdorferi numbers in vivo, and phagocytotic capacity in vitro, were unaltered in uPA, tPA (low fibrinolytic activity) and PAI-1 (high fibrinolytic activity) knock-out mice compared to WT controls. Strikingly, in uPAR knock-out mice partially backcrossed to a B. burgdorferi susceptible C3H/HeN background, higher B. burgdorferi numbers were associated with more severe carditis and increased local TLR2 and IL-1β mRNA expression. In conclusion, in B. burgdorferi infection, uPAR is required for phagocytosis and adequate eradication of the spirochete from the heart by a mechanism that is independent of binding of uPAR to uPA or its role in the fibrinolytic system.


[1]  Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, et al. (1982) Lyme disease-a tick-borne spirochetosis? Science 216: 1317–1319.
[2]  Steere AC (1989) Lyme disease. N Engl J Med 321: 586–596.
[3]  van Dam AP, Kuiper H, Vos K, Widjojokusumo A, de Jongh BM, et al. (1993) Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis 17: 708–717.
[4]  Steere AC (2001) Lyme disease. N Engl J Med 345: 115–125.
[5]  Hovius JW, van Dam AP, Fikrig E (2007) Tick-host-pathogen interactions in Lyme borreliosis. Trends Parasitol 23: 434–438.
[6]  Bergmann S, Hammerschmidt S (2007) Fibrinolysis and host response in bacterial infections. Thromb Haemost 98: 512–520.
[7]  Coleman JL, Gebbia JA, Piesman J, Degen JL, Bugge TH, et al. (1997) Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 89: 1111–1119.
[8]  Klempner MS, Noring R, Epstein MP, McCloud B, Hu R, et al. (1995) Binding of human plasminogen and urokinase-type plasminogen activator to the Lyme disease spirochete, Borrelia burgdorferi. J Infect Dis 171: 1258–1265.
[9]  Klempner MS, Noring R, Epstein MP, McCloud B, Rogers RA (1996) Binding of human urokinase type plasminogen activator and plasminogen to Borrelia species. J Infect Dis 174: 97–104.
[10]  Haile WB, Coleman JL, Benach JL (2006) Reciprocal upregulation of urokinase plasminogen activator and its inhibitor, PAI-2, by Borrelia burgdorferi affects bacterial penetration and host-inflammatory response. Cell Microbiol 8: 1349–1360.
[11]  Perides G, Noring R, Klempner MS (1996) Inhibition of Borrelia burgdorferi-bound fibrinolytic enzymes by alpha2-antiplasmin, PAI-1 and PAI-2. Biochem Biophys Res Commun 219: 690–695.
[12]  Coleman JL, Gebbia JA, Benach JL (2001) Borrelia burgdorferi and other bacterial products induce expression and release of the urokinase receptor (CD87). J Immunol 166: 473–480.
[13]  Coleman JL, Benach JL (2003) The urokinase receptor can be induced by Borrelia burgdorferi through receptors of the innate immune system. Infect Immun 71: 5556–5564.
[14]  Mondino A, Blasi F (2004) uPA and uPAR in fibrinolysis, immunity and pathology. Trends Immunol 25: 450–455.
[15]  Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3: 932–943.
[16]  Furlan F, Orlando S, Laudanna C, Resnati M, Basso V, et al. (2004) The soluble D2D3(88-274) fragment of the urokinase receptor inhibits monocyte chemotaxis and integrin-dependent cell adhesion. J Cell Sci 117: 2909–2916.
[17]  Gyetko MR, Todd RF III, Wilkinson CC, Sitrin RG (1994) The urokinase receptor is required for human monocyte chemotaxis in vitro. J Clin Invest 93: 1380–1387.
[18]  Gyetko MR, Sitrin RG, Fuller JA, Todd RF III, Petty H, et al. (1995) Function of the urokinase receptor (CD87) in neutrophil chemotaxis. J Leukoc Biol 58: 533–538.
[19]  Gyetko MR, Aizenberg D, Mayo-Bond L (2004) Urokinase-deficient and urokinase receptor-deficient mice have impaired neutrophil antimicrobial activation in vitro. J Leukoc Biol 76: 648–656.
[20]  Renckens R, Roelofs JJ, Florquin S, van der Poll T (2006) Urokinase-type plasminogen activator receptor plays a role in neutrophil migration during lipopolysaccharide-induced peritoneal inflammation but not during Escherichia coli-induced peritonitis. J Infect Dis 193: 522–530.
[21]  Roelofs JJ, Rouschop KM, Teske GJ, Claessen N, Weening JJ, et al. (2006) The urokinase plasminogen activator receptor is crucially involved in host defense during acute pyelonephritis. Kidney Int 70: 1942–1947.
[22]  Gyetko MR, Sud S, Kendall T, Fuller JA, Newstead MW, et al. (2000) Urokinase receptor-deficient mice have impaired neutrophil recruitment in response to pulmonary Pseudomonas aeruginosa infection. J Immunol 165: 1513–1519.
[23]  Rijneveld AW, Levi M, Florquin S, Speelman P, Carmeliet P, et al. (2002) Urokinase receptor is necessary for adequate host defense against pneumococcal pneumonia. J Immunol 168: 3507–3511.
[24]  Plesner T, Behrendt N, Ploug M (1997) Structure, function and expression on blood and bone marrow cells of the urokinase-type plasminogen activator receptor, uPAR. Stem Cells 15: 398–408.
[25]  Xu Q, Seemanapalli SV, Reif KE, Brown CR, Liang FT (2007) Increasing the recruitment of neutrophils to the site of infection dramatically attenuates Borrelia burgdorferi infectivity. J Immunol 178: 5109–5115.
[26]  Armstrong AL, Barthold SW, Persing DH, Beck DS (1992) Carditis in Lyme disease susceptible and resistant strains of laboratory mice infected with Borrelia burgdorferi. Am J Trop Med Hyg 47: 249–258.
[27]  Guerau-De-Arellano M, Alroy J, Bullard D, Huber BT (2005) Aggravated Lyme carditis in CD11a(?/?) and CD11c(?/?) mice. Infection and Immunity 73: 7637–7643.
[28]  Guerau-De-Arellano M, Alroy J, Huber BT (2005) beta 2 integrins control the severity of murine Lyme carditis. Infection and Immunity 73: 3242–3250.
[29]  Hovius JW, Li X, Ramamoorthi N, van Dam AP, Barthold SW, et al. (2007) Coinfection with Borrelia burgdorferi sensu stricto and Borrelia garinii alters the course of murine Lyme borreliosis. FEMS Immunol Med Microbiol 49: 224–234.
[30]  Ma Y, Seiler KP, Eichwald EJ, Weis JH, Teuscher C, et al. (1998) Distinct characteristics of resistance to Borrelia burgdorferi-induced arthritis in C57BL/6N mice. Infect Immun 66: 161–168.
[31]  Hartiala P, Hytonen J, Suhonen J, Lepparanta O, Tuominen-Gustafsson H, et al. (2008) Borrelia burgdorferi inhibits human neutrophil functions. Microbes Infect 10: 60–68.
[32]  de Jong MA, de Witte L, Oudhoff MJ, Gringhuis SI, Gallay P, et al. (2008) TNF-alpha and TLR agonists increase susceptibility to HIV-1 transmission by human Langerhans cells ex vivo. J Clin Invest 118: 3440–3452.
[33]  Mullegger RR, McHugh G, Ruthazer R, Binder B, Kerl H, et al. (2000) Differential expression of cytokine mRNA in skin specimens from patients with erythema migrans or acrodermatitis chronica atrophicans. J Invest Dermatol 115: 1115–1123.
[34]  Cruz AR, Moore MW, La Vake CJ, Eggers CH, Salazar JC, et al. (2008) Phagocytosis of Borrelia burgdorferi, the Lyme disease spirochete, potentiates innate immune activation and induces apoptosis in human monocytes. Infect Immun 76: 56–70.
[35]  Moore MW, Cruz AR, LaVake CJ, Marzo AL, Eggers CH, et al. (2007) Phagocytosis of Borrelia burgdorferi and Treponema pallidum potentiates innate immune activation and induces gamma interferon production. Infect Immun 75: 2046–2062.
[36]  Shin OS, Isberg RR, Akira S, Uematsu S, Behera AK, et al. (2008) Distinct Roles for MyD88 and Toll-Like Receptors 2, 5, and 9 in Phagocytosis of Borrelia burgdorferi and Cytokine Induction. Infect Immun 76: 2341–2351.
[37]  Fuchs H, Wallich R, Simon MM, Kramer MD (1994) The outer surface protein A of the spirochete Borrelia burgdorferi is a plasmin(ogen) receptor. Proc Natl Acad Sci U S A 91: 12594–12598.
[38]  Grab DJ, Perides G, Dumler JS, Kim KJ, Park J, et al. (2005) Borrelia burgdorferi, host-derived proteases, and the blood-brain barrier. Infect Immun 73: 1014–1022.
[39]  Hu LT, Perides G, Noring R, Klempner MS (1995) Binding of human plasminogen to Borrelia burgdorferi. Infect Immun 63: 3491–3496.
[40]  Gebbia JA, Monco JC, Degen JL, Bugge TH, Benach JL (1999) The plasminogen activation system enhances brain and heart invasion in murine relapsing fever borreliosis. J Clin Invest 103: 81–87.
[41]  Auron PE, Webb AC, Rosenwasser LJ, Mucci SF, Rich A, et al. (1984) Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci U S A 81: 7907–7911.
[42]  Gamero AM, Oppenheim JJ (2006) IL-1 can act as number one. Immunity 24: 16–17.
[43]  Miller LS, O'Connell RM, Gutierrez MA, Pietras EM, Shahangian A, et al. (2006) MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 24: 79–91.
[44]  Kelleher DM, Telford SR III, Criscione L, Lin SR, Spielman A, et al. (1998) Cytokines in murine lyme carditis: Th1 cytokine expression follows expression of proinflammatory cytokines in a susceptible mouse strain. J Infect Dis 177: 242–246.
[45]  Miller LC, Isa S, Vannier E, Georgilis K, Steere AC, et al. (1992) Live Borrelia burgdorferi preferentially activate interleukin-1 beta gene expression and protein synthesis over the interleukin-1 receptor antagonist. J Clin Invest 90: 906–912.
[46]  Montgomery RR, Wang XM, Malawista SE (2001) Murine Lyme disease: no evidence for active immune down-regulation in resolving or subclinical infection. J Infect Dis 183: 1631–1637.
[47]  Wang G, Petzke MM, Iyer R, Wu H, Schwartz I (2008) Pattern of proinflammatory cytokine induction in RAW264.7 mouse macrophages is identical for virulent and attenuated Borrelia burgdorferi. J Immunol 180: 8306–8315.
[48]  Hovius JW, de Jong MA, den Dunnen J, Litjens M, Fikrig E, et al. (2008) Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathog 4: e31. doi:10.1371/journal.ppat.0040031.
[49]  Dewerchin M, Nuffelen AV, Wallays G, Bouche A, Moons L, et al. (1996) Generation and characterization of urokinase receptor-deficient mice. J Clin Invest 97: 870–878.
[50]  Purser JE, Norris SJ (2000) Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc Natl Acad Sci U S A 97: 13865–13870.
[51]  Hovius JW, Schuijt TJ, de Groot KA, Roelofs JJ, Oei GA, et al. (2008) Preferential Protection of Borrelia burgdorferi Sensu Stricto by a Salp15 Homologue in Ixodes ricinus Saliva. J Infect Dis 198: 1189–1197.
[52]  Fikrig E, Barthold SW, Kantor FS, Flavell RA (1992) Long-term protection of mice from Lyme disease by vaccination with OspA. Infect Immun 60: 773–777.
[53]  Tas SW, Vervoordeldonk MJ, Hajji N, May MJ, Ghosh S, Tak PP (2006) Local treatment with the selective IkappaB kinase beta inhibitor NEMO-binding domain peptide ameliorates synovial inflammation. Arthritis Res Ther 8: R86.
[54]  Leemans JC, Florquin S, Heikens M, Pals ST, van der Neut R, et al. (2003) CD44 is a macrophage binding site for Mycobacterium tuberculosis that mediates macrophage recruitment and protective immunity against tuberculosis. J Clin Invest 111: 681–689.
[55]  Wiersinga WJ, Dessing MC, van der Poll T (2008) Gene-expression profiles in murine melioidosis. Microbes Infect 10: 868–877.
[56]  Alves NL, Derks IA, Berk E, Spijker R, van Lier RA, et al. (2006) The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity 24: 703–716.
[57]  Carmeliet P, Moons L, Ploplis V, Plow E, Collen D (1997) Impaired arterial neointima formation in mice with disruption of the plasminogen gene. J Clin Invest 99: 200–208.
[58]  Wiersinga WJ, Wieland CW, Dessing MC, Chantratita N, Cheng AC, et al. (2007) Toll-like receptor 2 impairs host defense in gram-negative sepsis caused by Burkholderia pseudomallei (Melioidosis). PLoS Med 4: e248. doi:10.1371/journal.pmed.0040248.
[59]  Miller JL, de Wet BJ, Martinez-Pomares L, Radcliffe CM, Dwek RA, et al. (2008) The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 4: e17. doi:10.1371/journal.ppat.0040017.
[60]  Knapp S, Matt U, Leitinger N, van der Poll T (2007) Oxidized phospholipids inhibit phagocytosis and impair outcome in gram-negative sepsis in vivo. J Immunol 178: 993–1001.
[61]  Leendertse M, Willems RJ, Giebelen IA, van den Pangaart PS, Wiersinga WJ, et al. (2008) TLR2-dependent MyD88 signaling contributes to early host defense in murine Enterococcus faecium peritonitis. J Immunol 180: 4865–4874.
[62]  Wan CP, Park CS, Lau BH (1993) A rapid and simple microfluorometric phagocytosis assay. J Immunol Methods 162: 1–7.
[63]  Tuominen-Gustafsson H, Penttinen M, Hytonen J, Viljanen MK (2006) Use of CFSE staining of borreliae in studies on the interaction between borreliae and human neutrophils. BMC Microbiol 6: 92.
[64]  Bijlsma MF, Borensztajn KS, Roelink H, Peppelenbosch MP, Spek CA (2007) Sonic hedgehog induces transcription-independent cytoskeletal rearrangement and migration regulated by arachidonate metabolites. Cell Signal 19: 2596–2604.
[65]  Slofstra SH, Bijlsma MF, Groot AP, Reitsma PH, Lindhout T, et al. (2007) Protease-activated receptor-4 inhibition protects from multiorgan failure in a murine model of systemic inflammation. Blood 110: 3176–3182.
[66]  Tatsumi K, Ohashi K, Taminishi S, Okano T, Yoshioka A, et al. (2008) Reference gene selection for real-time RT-PCR in regenerating mouse livers. Biochem Biophys Res Commun 374: 106–110.


comments powered by Disqus