All Title Author
Keywords Abstract


Newly Discovered Ebola Virus Associated with Hemorrhagic Fever Outbreak in Uganda

DOI: 10.1371/journal.ppat.1000212

Full-Text   Cite this paper   Add to My Lib

Abstract:

Over the past 30 years, Zaire and Sudan ebolaviruses have been responsible for large hemorrhagic fever (HF) outbreaks with case fatalities ranging from 53% to 90%, while a third species, C?te d'Ivoire ebolavirus, caused a single non-fatal HF case. In November 2007, HF cases were reported in Bundibugyo District, Western Uganda. Laboratory investigation of the initial 29 suspect-case blood specimens by classic methods (antigen capture, IgM and IgG ELISA) and a recently developed random-primed pyrosequencing approach quickly identified this to be an Ebola HF outbreak associated with a newly discovered ebolavirus species (Bundibugyo ebolavirus) distantly related to the C?te d'Ivoire ebolavirus found in western Africa. Due to the sequence divergence of this new virus relative to all previously recognized ebolaviruses, these findings have important implications for design of future diagnostic assays to monitor Ebola HF disease in humans and animals, and ongoing efforts to develop effective antivirals and vaccines.

References

[1]  Suzuki Y, Gojobori T (1997) The origin and evolution of Ebola and Marburg viruses. Mol Bio Evol 14(8): 800–806.
[2]  Sanchez A, Geisbert TW, Feldmann H (2007) Filoviridae: Marburg and Ebola Viruses. In: Knipe DM, Howley PM, editors. Fields Virology. Philidelphia: Lippincott Williams and Williams. pp. 1409–1448.
[3]  Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, et al. (2005) Fruit bats as reservoirs of Ebola virus. Nature 438: 575–6.
[4]  Towner JS, Pourrut X, Albari?o CG, Nze Nkogue C, Bird BH, et al. (2007) Marburg virus infection detected in a common African bat. PLoS ONE 2(8): e764. doi:10.1371/journal.pone.0000764.
[5]  Swanepoel R, Smit SB, Rollin PE, Formenty P, Leman PA, et al. (2007) Studies of reservoir hosts for Marburg virus. Emerg Infect Dis 13(12): 1847–51.
[6]  Le Guenno B, Formenty P, Wyers M, Gounon P, Walker F, et al. (1995) Isolation and partial characterization of a new strain of Ebola virus. Lancet 345: 1271–4.
[7]  Ksiazek TG, Rollin PE, Williams AJ, Bressler DS, Martin ML, et al. (1999) Clinical virology of Ebola hemorrhagic fever (EHF): virus, virus antigen, IgG and IgM antibody findings among EHF patients in Kikwit, Democratic Republic of Congo, 1995. J Infect Dis 179: (suppl 1)S177–S187.
[8]  Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283–7.
[9]  World Health Organization (2008) Ebola outbreak contained in Uganda. Features. Available: http://www.who.int/features/2008/ebola_o?utbreak/en/. Accessed 22 February 2008.
[10]  Jones SM, Feldmann H, Str?her U, Geisbert JB, Fernando L, et al. (2005) Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat Med 11: 786–90.
[11]  Geisbert TW, Daddario-DiCaprio KM, Williams KJ, Geisbert JB, Leung A, et al. (2008) Recombinant vesicular stomatitis virus vector mediates postexposure protection against Sudan Ebola hemorrhagic fever in nonhuman primates. J Virol 82: 5664–8.
[12]  Sullivan NJ, Sanchez A, Rollin PE, Yang ZY, Nabel GJ (2000) Development of a preventive vaccine for Ebola virus infection in primates. Nature 408: 605–609.
[13]  Ksiazek TG, West CP, Rollin PE, Jahrling PB, Peters C J (1999) ELISA for the detection of antibodies to Ebola viruses. J Infect Dis 179: (suppl 1)S192–S198.
[14]  Rodriguez L, De Roo A, Guimard Y, Trappier SG, Sanchez A, et al. (1999) Persistence and genetic stability of Ebola virus during the outbreak in Kikwit, Democratic Republic of Congo, 1995. J Infect Dis 179: (suppl 1)S170–S176.
[15]  Towner JS, Sealy TK, Ksiazek TG, Nichol ST (2007) High-throughput molecular detection of hemorrhagic fever virus threats with applications for outbreak settings. J Infect Dis 196: (suppl 2)S205–212.
[16]  Sanchez A, Ksiazek TG, Rollin PE, Miranda MEG, Trappier SG, et al. (1999) Detection and molecular characterization of Ebola viruses causing disease in human and nonhuman primates. J Infect Dis 179: (suppl 1)S164–S169.
[17]  Towner JS, Khristova ML, Sealy TK, Vincent MJ, Erickson BR, et al. (2006) Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J Virol 80: 6497–516.
[18]  Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.
[19]  Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods) version 4.0b10. Sunderland, Mass: Sinauer Associates.
[20]  Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.
[21]  Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
[22]  Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581–583.

Full-Text

comments powered by Disqus