All Title Author
Keywords Abstract

PLOS ONE  2012 

A Role for the CAL1-Partner Modulo in Centromere Integrity and Accurate Chromosome Segregation in Drosophila

DOI: 10.1371/journal.pone.0045094

Full-Text   Cite this paper   Add to My Lib

Abstract:

The relationship between the nucleolus and the centromere, although documented, remains one of the most elusive aspects of centromere assembly and maintenance. Here we identify the nucleolar protein, Modulo, in complex with CAL1, a factor essential for the centromeric deposition of the centromere-specific histone H3 variant, CID, in Drosophila. Notably, CAL1 localizes to both centromeres and the nucleolus. Depletion of Modulo, by RNAi, results in defective recruitment of newly-synthesized CAL1 at the centromere. Furthermore, depletion of Modulo negatively affects levels of CID at the centromere and results in chromosome missegregation. Interestingly, examination of Modulo localization during mitosis reveals it localizes to the chromosome periphery but not the centromere. Combined, the data suggest that rather than a direct regulatory role at the centromere, it is the nucleolar function of modulo which is regulating the assembly of the centromere by directing the localization of CAL1. We propose that a functional link between the nucleolus and centromere assembly exists in Drosophila, which is regulated by Modulo.

References

[1]  Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10: 882–891.
[2]  Blower MD, Karpen GH (2001) The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol 3: 730–739.
[3]  Foltz DR, Jansen LE, Bailey AO, Yates JR 3rd, Bassett EA, et al. (2009) Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137: 472–484.
[4]  Barnhart MC, Kuich PH, Stellfox ME, Ward JA, Bassett EA, et al. (2011) HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J Cell Biol 194: 229–243.
[5]  Stoler S, Rogers K, Weitze S, Morey L, Fitzgerald-Hayes M, et al. (2007) Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc Natl Acad Sci U S A 104: 10571–10576.
[6]  Sanchez-Pulido L, Pidoux AL, Ponting CP, Allshire RC (2009) Common ancestry of the CENP-A chaperones Scm3 and HJURP. Cell 137: 1173–1174.
[7]  Pidoux AL, Choi ES, Abbott JK, Liu X, Kagansky A, et al. (2009) Fission yeast Scm3: A CENP-A receptor required for integrity of subkinetochore chromatin. Mol Cell 33: 299–311.
[8]  Camahort R, Li B, Florens L, Swanson SK, Washburn MP, et al. (2007) Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol Cell 26: 853–865.
[9]  Mizuguchi G, Xiao H, Wisniewski J, Smith MM, Wu C (2007) Nonhistone Scm3 and histones CenH3–H4 assemble the core of centromere-specific nucleosomes. Cell 129: 1153–1164.
[10]  Erhardt S, Mellone BG, Betts CM, Zhang W, Karpen GH, et al. (2008) Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J Cell Biol 183: 805–818.
[11]  Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, et al. (2007) Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316: 417–421.
[12]  Mellone BG, Grive KJ, Shteyn V, Bowers SR, Oderberg I, et al. (2011) Assembly of Drosophila centromeric chromatin proteins during mitosis. PLoS Genet 7: e1002068.
[13]  Schittenhelm RB, Althoff F, Heidmann S, Lehner CF (2010) Detrimental incorporation of excess Cenp-A/Cid and Cenp-C into Drosophila centromeres is prevented by limiting amounts of the bridging factor Cal1. J Cell Sci 123: 3768–3779.
[14]  Guttenbach M, Martinez-Exposito MJ, Engel W, Schmid M (1996) Interphase chromosome arrangement in Sertoli cells of adult mice. Biol Reprod 54: 980–986.
[15]  Ochs RL, Press RI (1992) Centromere autoantigens are associated with the nucleolus. Exp Cell Res 200: 339–350.
[16]  Weimer R, Haaf T, Kruger J, Poot M, Schmid M (1992) Characterization of centromere arrangements and test for random distribution in G0, G1, S, G2, G1, and early S′ phase in human lymphocytes. Hum Genet 88: 673–682.
[17]  Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, et al. (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17: 1146–1160.
[18]  Pluta AF, Earnshaw WC (1996) Specific interaction between human kinetochore protein CENP-C and a nucleolar transcriptional regulator. J Biol Chem 271: 18767–18774.
[19]  Shan B, Zhu X, Chen PL, Durfee T, Yang Y, et al. (1992) Molecular cloning of cellular genes encoding retinoblastoma-associated proteins: identification of a gene with properties of the transcription factor E2F. Mol Cell Biol 12: 5620–5631.
[20]  Kato T, Sato N, Hayama S, Yamabuki T, Ito T, et al. (2007) Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res 67: 8544–8553.
[21]  Dunleavy EM, Roche D, Tagami H, Lacoste N, Ray-Gallet D, et al. (2009) HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137: 485–497.
[22]  Jansen LE, Black BE, Foltz DR, Cleveland DW (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 795–805.
[23]  Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR, et al. (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 458–469.
[24]  Frehlick LJ, Eirin-Lopez JM, Ausio J (2007) New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones. Bioessays 29: 49–59.
[25]  Grisendi S, Mecucci C, Falini B, Pandolfi PP (2006) Nucleophosmin and cancer. Nat Rev Cancer 6: 493–505.
[26]  Chang JH, Lin JY, Wu MH, Yung BY (1998) Evidence for the ability of nucleophosmin/B23 to bind ATP. Biochem J 329 (Pt 3) 539–544.
[27]  Chun Y, Park B, Koh W, Lee S, Cheon Y, et al. (2011) New centromeric component CENP-W is an RNA-associated nuclear matrix protein that interacts with nucleophosmin/B23 protein. J Biol Chem 286: 42758–42769.
[28]  Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukagawa T, et al. (2011) Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145: 410–422.
[29]  Amin MA, Matsunaga S, Uchiyama S, Fukui K (2008) Nucleophosmin is required for chromosome congression, proper mitotic spindle formation, and kinetochore-microtubule attachment in HeLa cells. FEBS Lett 582: 3839–3844.
[30]  Perrin L, Demakova O, Fanti L, Kallenbach S, Saingery S, et al. (1998) Dynamics of the sub-nuclear distribution of Modulo and the regulation of position-effect variegation by nucleolus in Drosophila. J Cell Sci 111 (Pt 18) 2753–2761.
[31]  Perrin L, Benassayag C, Morello D, Pradel J, Montagne J (2003) Modulo is a target of Myc selectively required for growth of proliferative cells in Drosophila. Mech Dev 120: 645–655.
[32]  Ginisty H, Sicard H, Roger B, Bouvet P (1999) Structure and functions of nucleolin. J Cell Sci 112 (Pt 6) 761–772.
[33]  Bouche G, Caizergues-Ferrer M, Bugler B, Amalric F (1984) Interrelations between the maturation of a 100 kDa nucleolar protein and pre rRNA synthesis in CHO cells. Nucleic Acids Res 12: 3025–3035.
[34]  Egyhazi E, Pigon A, Chang JH, Ghaffari SH, Dreesen TD, et al. (1988) Effects of anti-C23 (nucleolin) antibody on transcription of ribosomal DNA in Chironomus salivary gland cells. Exp Cell Res 178: 264–272.
[35]  Perrin L, Romby P, Laurenti P, Berenger H, Kallenbach S, et al. (1999) The Drosophila modifier of variegation modulo gene product binds specific RNA sequences at the nucleolus and interacts with DNA and chromatin in a phosphorylation-dependent manner. J Biol Chem 274: 6315–6323.
[36]  Mikhaylova LM, Boutanaev AM, Nurminsky DI (2006) Transcriptional regulation by Modulo integrates meiosis and spermatid differentiation in male germ line. Proc Natl Acad Sci U S A 103: 11975–11980.
[37]  Krejci E, Garzino V, Mary C, Bennani N, Pradel J (1989) Modulo, a new maternally expressed Drosophila gene encodes a DNA-binding protein with distinct acidic and basic regions. Nucleic Acids Res 17: 8101–8115.
[38]  Garzino V, Pereira A, Laurenti P, Graba Y, Levis RW, et al. (1992) Cell lineage-specific expression of modulo, a dose-dependent modifier of variegation in Drosophila. EMBO J 11: 4471–4479.
[39]  Gautier T, Robert-Nicoud M, Guilly MN, Hernandez-Verdun D (1992) Relocation of nucleolar proteins around chromosomes at mitosis. A study by confocal laser scanning microscopy. J Cell Sci 102 (Pt 4) 729–737.
[40]  Pereira A, Doshen J, Tanaka E, Goldstein LS (1992) Genetic analysis of a Drosophila microtubule-associated protein. J Cell Biol 116: 377–383.
[41]  Roman G, He J, Davis RL (2000) kurtz, a novel nonvisual arrestin, is an essential neural gene in Drosophila. Genetics 155: 1281–1295.
[42]  Phansalkar R, Lapierre P, Mellone BG (2012) Evolutionary insights into the role of the essential centromere protein CAL1 in Drosophila. Chromosome Research In press.
[43]  Bodenmiller B, Malmstrom J, Gerrits B, Campbell D, Lam H, et al. (2007) PhosphoPep–a phosphoproteome resource for systems biology research in Drosophila Kc167 cells. Mol Syst Biol 3: 139.
[44]  Sullivan BA, Blower MD, Karpen GH (2001) Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet 2: 584–596.
[45]  Blower MD, Daigle T, Kaufman T, Karpen GH (2006) Drosophila CENP-A mutations cause a BubR1-dependent early mitotic delay without normal localization of kinetochore components. PLoS Genet 2: e110.
[46]  Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, et al. (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10: 303–315.
[47]  Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27: 353–365.

Full-Text

comments powered by Disqus