Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other organisms. Our data provide insights about how S. mutans optimizes its metabolism and adapts/survives within the mixed-species community in response to a dynamically changing environment. This reflects the intricate physiological processes linked to expression of virulence by this bacterium within complex biofilms.
References
[1]
Marsh PD (1994) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8: 263–271.
[2]
Quivey RG Jr, Kuhnert WL, Hahn K (2000) Adaptation of oral streptococci to low pH. Adv Microb Physiol 42: 239–274.
[3]
Paes Leme AF, Koo H, Bellato CM, Bedi G, Cury JA, et al. (2006) The role of sucrose in cariogenic dental biofilm formation–new insight. J Dent Res 85: 878–887.
[4]
Bowen WH, Koo H (2011) Biology of Streptococcus mutans-Derived Glucosyltransferases: Role in Extracellular Matrix Formation of Cariogenic Biofilms. Caries Res 45: 69–86.
[5]
Yamashita Y, Bowen WH, Burne RA, Kuramitsu HK (1993) Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun 61: 3811–3817.
[6]
Mattos-Graner RO, Smith DJ, King WF, Mayer MP (2000) Water-insoluble glucan synthesis by mutans streptococcal strains correlates with caries incidence in 12- to 30-month-old children. J Dent Res 79: 1371–1377.
[7]
Nyvad B, Kilian M (1990) Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res 24: 267–72.
Valm AM, Welch JL, Rieken CW, Hasegawa Y, Sogin ML, et al. (2011) Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Natl Acad Sci U S A 108: 4152–4157.
[10]
Takahashi N, Nyvad B (2011) The role of bacteria in the caries process: ecological perspectives. J Dent Res 90: 294–303.
[11]
Xiao J, Koo H (2010) Structural organization and dynamics of exopolysaccharide matrix and microcolonies formation by Streptococcus mutans in biofilms. J Appl Microbiol 108: 2103–2113.
[12]
Koo H, Xiao J, Klein MI, Jeon JG (2010) Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. J Bacteriol 192: 3024–3032.
[13]
Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, et al. (2012) The Exopolysaccharide Matrix Modulates the Interaction between 3D Architecture and Virulence of a Mixed-Species Oral Biofilm. PLoS Pathog 8(4): e1002623.
[14]
Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnology 19: 242–247.
[15]
Liu H, Sadygov RG, Yates JR 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76: 4193–4201.
[16]
Fujiwara T, Hoshino T, Ooshima T, Sobue S, Shigeyuki H, et al. (2000) Purification, characterization, and molecular analysis of the gene encoding glucosyltransferase from Streptococcus oralis. Infect Immun 68: 2475–2483.
[17]
Marsh PD (2003) Are dental diseases examples of ecological catastrophes? Microbiology 149: 279–294.
[18]
Allen PZ, Bowen WH (1990) Immunochemical studies on levans from several strains of Actinomyces viscosus. Arch Oral Biol 35: 55–62.
[19]
Bergeron LJ, Morou-Bermudez E, Burne RA (2000) Characterization of the fructosyltransferase gene of Actinomyces naeslundii WVU45. J Bacteriol 182: 3649–3654.
[20]
Koo H, Schobel BD, Scott-Anne K, Watson G, Bowen WH, et al. (2005) Apigenin and tt-farnesol with fluoride effects on S. mutans biofilms and dental caries. J Dent Res 84: 1016–1020.
[21]
Catalan MA, Scott-Anne K, Klein MI, Koo H, Bowen WH, et al. (2011) Elevated incidence of dental caries in a mouse model of cystic fibrosis. PLoS One 6: e16549.
[22]
Klein MI, Scott-Anne KM, Gregoire S, Rosalen PL, Koo H. Molecular approaches for viable bacterial population and transcriptional analyses in a rodent model of dental caries. Mol Oral Microbiol. In press.
[23]
Moore S, Stein WH (1954) A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem 211: 907–913.
[24]
Xu T, Venable JD, Park SK, Cociorva D, Lu B, et al.. (2006) ProLuCID, a fast and sensitive tandem mass spectra-based protein identification program. Mol Cell Proteomics 5.
[25]
Eng JK, McCormack AL, Yates JR 3rd (1994) An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database. J Am Soc Mass Spectrom: 976–989.
[26]
Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi S, et al. (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2: 43–50.
[27]
Sadygov RG, Eng J, Durr E, Saraf A, McDonald H, et al. (2002) Code Developments to Improve the Efficiency of Automated MS/MS Spectra Interpretation. J Proteome Res 2: 211–215.
[28]
Tabb DL, McDonald WH, Yates JR 3rd (2002) DTASelect and Contrast: Tools for assembling and comparing protein identifications from shotgun Proteomics. J Proteome Res 1: 21.26.
[29]
Cociorva D, L Tabb T, Yates JR (2007) Validation of tandem mass spectrometry database search results using DTASelect. Curr Protoc Bioinformatics Chapter 13: Unit 13.4.
[30]
Cury JA, Koo H (2007) Extraction and purification of total RNA from Streptococcus mutans biofilms. Anal Biochem 365: 208–214.
[31]
Klein MI, DeBaz L, Agidi S, Lee H, Xie G, et al. (2010) Dynamics of Streptococcus mutans transcriptome in response to starch and sucrose during biofilm development. PLoS One 5: e13478.
[32]
Yin JL, Shackel NA, Zekry A, McGuinness PH, Richards C, et al. (2001) Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunol Cell Biol. 79: 213–221.
[33]
Koo H, Seils J, Abranches J, Burne RA, Bowen WH, Quivey RG Jr, et al. (2006) Influence of apigenin on gtf gene expression in Streptococcus mutans UA159. Antimicrob Agents Chemother 50: 542–546.
[34]
Klein MI, Duarte S, Xiao J, Mitra S, Foster TH, et al. (2009) Structural and molecular basis of the role of starch and sucrose in Streptococcus mutans biofilm development. Appl Environ Microbiol 75: 837–841.
[35]
Svens?ter G, Welin J, Wilkins JC, Beighton D, Hamilton IR, et al. (2001) Protein expression by planktonic and biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 205: 139–146.
[36]
Welin J, Wilkins JC, Beighton D, Wrzesinski K, Fey SJ, et al. (2003) Effect of acid shock on protein expression by biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 227: 287–293.
[37]
Len AC, Harty DW, Jacques NA (2004). Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance. Microbiology 150, 1339–1351.
[38]
Len AC, Harty DW, Jacques NA (2004) Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology 150: 1353–1366.
[39]
Chattoraj P, Banerjee A, Biswas S, Biswas I (2010) ClpP of Streptococcus mutans differentially regulates expression of genomic islands, mutacin production, and antibiotic tolerance. J Bacteriol. 192: 1312–1323.
[40]
Lemos JA, Burne RA (2008) A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology 154: 3247–3255.
[41]
Vacca Smith AM, Scott-Anne KM, Whelehan MT, Berkowitz RJ, Feng C, et al. (2007) Salivary glucosyltransferase B as a possible marker for caries activity. Caries Res 41: 445–450.
[42]
Yoshida A, Ansai T, Takehara T, Kuramitsu HK (2005) LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl Environ Microbiol 71: 2372–2380.
[43]
Wen ZT, Yates D, Ahn SJ, Burne RA (2010) Biofilm formation and virulence expression by Streptococcus mutans are altered when grown in dual-species model. BMC Microbiol 10: 111.
[44]
Browngardt CM, Wen ZT, Burne RA (2004) RegM is required for optimal fructosyltransferase and glucosyltransferase gene expression in Streptococcus mutans. FEMS Microbiol Lett 240: 75–79.
[45]
Abranches J, Chen YY, Burne RA (2003) Characterization of Streptococcus mutans strains deficient in EIIAB Man of the sugar phosphotransferase system. Appl Environ Microbiol 69: 4760–4769.
[46]
Abranches J, Nascimento MM, Zeng L, Browngardt CM, Wen ZT, et al. (2008) CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans. J Bacteriol 190: 2340–2349.
[47]
Stephen KW, Jenkins GN (1971) Studies on some factors affecting plaque pH. Caries Res 5: 28.
[48]
Guggenheim B, Burckhardt JJ (1974) Isolation and properties of a dextranase from Streptococcus mutans OMZ 176. Helv Odontol Acta 18: 101–113.
[49]
Walker GJ, Pulkownik A, Morrey-Jones JG (1981) Metabolism of the polysaccharides of human dental plaque: release of dextranase in batch cultures of Streptococcus mutans. J Gen Microbiol 127: 201–208.
[50]
Hayacibara MF, Koo H, Vacca-Smith AM, Kopec LK, Scott-Anne K, et al. (2004) The influence of mutanase and dextranase on the production and structure of glucans synthesized by streptococcal glucosyltransferases. Carbohydr Res 339: 2127–2137.
[51]
Wilson RF, Ashley FP (1990) Relationships between the biochemical composition of both free smooth surface and approximal plaque and salivary composition and a 24-hour retrospective dietary history of sugar intake in adolescents. Caries Res 24: 203–210.
[52]
Banas JA, Vickerman MM (2003) Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med 14: 89–99.
[53]
Lynch DJ, Fountain TL, Mazurkiewicz JE, Banas JA (2007) Glucan-binding proteins are essential for shaping Streptococcus mutans biofilm architecture. FEMS Microbiol Lett 268: 158–165.
[54]
Duque C, Stipp RN, Wang B, Smith DJ, H?fling JF, et al. (2011) Downregulation of GbpB, a component of the VicRK regulon, affects biofilm formation and cell surface characteristics of Streptococcus mutans. Infect Immun 79: 786–796.
[55]
Loesche WJ, Henry CA (1967) Intracellular microbial polysaccharide production and dental caries in a Guatemalan Indian village. Arch Oral Biol 12: 189–194.
[56]
Tanzer JM, Freedman ML, Woodiel FN, Eifert RL, Rinehimer LA (1976) Association of Streptococcus mutans virulence with synthesis of intracellular polysaccharide. In: Stiles HM, Loesche WJ, O’Brien TL, editors. Proceedings in microbiology. Aspects of dental caries. Special supplement to Microbiology Abstracts. London: Information Retrieval, Inc., 596–616.
[57]
Spatafora G, Rohrer K, Barnard D, Michalek S (1995) A Streptococcus mutans mutant that synthesizes elevated levels of intracellular polysaccharide is hypercariogenic in vivo. Infect Immun 63: 2556–2563.
[58]
Spatafora GA, Sheets M, June R, Luyimbazi D, Howard K, et al. (1999) Regulated expression of the Streptococcus mutans dlt genes correlates with intracellular polysaccharide accumulation. J Bacteriol 181: 2363–72.
[59]
Ciardi JE, R?lla G, Bowen WH, Reilly JA (1977) Adsorption of Streptococcus mutans lipoteichoic acid to hydroxyapatite. Scand J Dent Res 85: 387–91.
[60]
Gross M, Cramton SE, Gotz F, Peschel A (2001) Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69: 3423–3426.
[61]
G?tz F (2002) Staphylococcus and biofilms. Mol Microbiol 43: 1367–1378.
[62]
Boyd DA, Cvitkovitch DG, Bleiweis AS, Kiriukhin MY, Debabov DV, et al. (2000) Defects in D-alanyl-lipoteichoic acid synthesis in Streptococcus mutans results in acid sensitivity. J Bacteriol 182: 6055–6065.
[63]
Bender GR, Sutton SV, Marquis RE (1986) Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun 53: 331–338.
[64]
Kuhnert WL, Zheng G, Faustoferri RC, Quivey RG Jr (2004) The F-ATPase operon promoter of Streptococcus mutans is transcriptionally regulated in response to external pH. J Bacteriol 186: 8524–8528.
[65]
Fozo EM, Quivey RG Jr (2004a) The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol 186: 4152–4158.
[66]
Fozo EM, Quivey RG Jr (2004b) Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl Environ Microbiol 70: 929–936.
[67]
Santiago B, Macgilvray M, Faustoferri RC, Quivey RG Jr (2012) The Branched-Chain Amino Acid Aminotransferase Encoded by ilvE Is Involved in Acid Tolerance in Streptococcus mutans. J Bacteriol 194: 2010–209.
[68]
Sheng J, Marquis RE (2007) Malolactic fermentation by Streptococcus mutans. FEMS Microbiol Lett 272: 196–201.
[69]
Griswold AR, Chen YY, Burne RA (2004) Analysis of an agmatine deiminase gene cluster in Streptococcus mutans UA159. J Bacteriol 186: 1902–1904.
[70]
Griswold AR, Jameson-Lee M, Burne RA (2006) Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159. J Bacteriol 188: 834–841.
[71]
Fozo EM, Scott-Anne K, Koo H, Quivey RG Jr (2007) Role of unsaturated fatty acid biosynthesis in virulence of Streptococcus mutans. Infect Immun 75: 1537–1539.
[72]
Lemos JA, Luzardo Y, Burne RA (2007) Physiologic effects of forced down-regulation of dnaK and groEL expression in Streptococcus mutans. J Bacteriol 189: 1582–1588.
[73]
de Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat Rev Genet 12: 833–845.
[74]
Derr AM, Faustoferri RC, Betzenhauser MJ, Gonzalez K, Marquis RE, et al. (2012) Mutation of the NADH oxidase gene (nox) reveals an overlap of the oxygen- and acid-mediated stress responses in Streptococcus mutans. Appl Environ Microbiol 78: 1215–1227.
[75]
Bitoun JP, Nguyen AH, Fan Y, Burne RA, Wen ZT, et al. (2011) Transcriptional repressor Rex is involved in regulation of oxidative stress response and biofilm formation by Streptococcus mutans. FEMS Microbiol Lett 320: 110–117.
[76]
Galperin MY, Koonin EV (2004) ‘Conserved hypothetical’ proteins: prioritization of targets for experimental study. Nucleic Acids Res. 32: 5452–5463.
[77]
Kajfasz JK, Rivera-Ramos I, Abranches J, Martinez AR, Rosalen PL, et al. (2010) Two Spx proteins modulate stress tolerance, survival, and virulence in Streptococcus mutans. J Bacteriol 192: 2546–2556.