All Title Author
Keywords Abstract

PLOS ONE  2012 

The Leukemia-Associated Fusion Protein MN1-TEL Blocks TEL-Specific Recognition Sequences

DOI: 10.1371/journal.pone.0046085

Full-Text   Cite this paper   Add to My Lib

Abstract:

The leukemia-associated fusion protein MN1-TEL combines the transcription-activating domains of MN1 with the DNA-binding domain of the transcriptional repressor TEL. Quantitative photobleaching experiments revealed that ~20% of GFP-tagged MN1 and TEL is transiently immobilised, likely due to indirect or direct DNA binding, since transcription inhibition abolished immobilisation. Interestingly, ~50% of the MN1-TEL fusion protein was immobile with much longer binding times than unfused MN1 and TEL. MN1-TEL immobilisation was not observed when the TEL DNA-binding domain was disrupted, suggesting that MN1-TEL stably occupies TEL recognition sequences, preventing binding of factors required for proper transcription regulation, which may contribute to leukemogenesis.

References

[1]  Buijs A, Sherr S, van Baal S, van Bezouw S, van der Plas D, et al. (1995) Translocation (12;22) (p13;q11) in myeloproliferative disorders results in fusion of the ETS-like TEL gene on 12p13 to the MN1 gene on 22q11 [published erratum appeared in Oncogene 1995 Aug 17;11(4): 809]. Oncogene 10: 1511–1519.
[2]  Chakrabarti SR, Nucifora G (1999) The leukemia-associated gene TEL encodes a transcription repressor which associates with SMRT and mSin3A. Biochem Biophys Res Commun 264: 871–877.
[3]  Janssen JW, Ridge SA, Papadopoulos P, Cotter F, Ludwig WD, et al. (1995) The fusion of TEL and ABL in human acute lymphoblastic leukaemia is a rare event. Br J Haematol 90: 222–224.
[4]  Bohlander SK (2005) ETV6: a versatile player in leukemogenesis. Semin Cancer Biol 15: 162–174.
[5]  Meester-Smoor MA, Janssen MJ, Grosveld GC, de Klein A, van IWF, et al. (2008) MN1 affects expression of genes involved in hematopoiesis and can enhance as well as inhibit RAR/RXR-induced gene expression. Carcinogenesis 29: 2025–2034.
[6]  Heuser M, Argiropoulos B, Kuchenbauer F, Yung E, Piper J, et al. (2007) MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in AML patients. Blood 110: 1639–1647.
[7]  Sutton AL, Zhang X, Ellison TI, Macdonald PN (2005) The 1,25(OH)2D3-regulated transcription factor MN1 stimulates vitamin D receptor-mediated transcription and inhibits osteoblastic cell proliferation. Mol Endocrinol 19: 2234–2244.
[8]  van Wely KH, Molijn AC, Buijs A, Meester-Smoor MA, Aarnoudse AJ, et al. (2003) The MN1 oncoprotein synergizes with coactivators RAC3 and p300 in RAR-RXR-mediated transcription. Oncogene 22: 699–709.
[9]  Heuser M, Beutel G, Krauter J, Dohner K, von Neuhoff N, et al. (2006) High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood 108: 3898–3905.
[10]  Carella C, Bonten J, Sirma S, Kranenburg TA, Terranova S, et al. (2007) MN1 overexpression is an important step in the development of inv(16) AML. Leukemia 21: 1679–1690.
[11]  van Wely KH, Meester-Smoor MA, Janssen MJ, Aarnoudse AJ, Grosveld GC, et al. (2007) The MN1-TEL myeloid leukemia-associated fusion protein has a dominant-negative effect on RAR-RXR-mediated transcription. Oncogene 26: 5733–5740.
[12]  Carella C, Bonten J, Rehg J, Grosveld GC (2006) MN1-TEL, the product of the t(12;22) in human myeloid leukemia, immortalizes murine myeloid cells and causes myeloid malignancy in mice. Leukemia 20: 1582–1592.
[13]  Kawagoe H, Grosveld GC (2005) Conditional MN1-TEL knock-in mice develop acute myeloid leukemia in conjunction with overexpression of HOXA9. Blood 106: 4269–4277.
[14]  Kawagoe H, Grosveld GC (2005) MN1-TEL myeloid oncoprotein expressed in multipotent progenitors perturbs both myeloid and lymphoid growth and causes T-lymphoid tumors in mice. Blood 106: 4278–4286.
[15]  van Royen ME, Farla P, Mattern KA, Geverts B, Trapman J, et al. (2009) Fluorescence Recovery After Photobleaching (FRAP) to Study Nuclear Protein Dynamics in Living Cells. Methods Mol Biol 464: 363–385.
[16]  Xouri G, Squire A, Dimaki M, Geverts B, Verveer PJ, et al. (2007) Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin. EMBO J 26: 1303–1314.
[17]  Farla P, Hersmus R, Trapman J, Houtsmuller AB (2005) Antiandrogens prevent stable DNA-binding of the androgen receptor. J Cell Sci 118: 4187–4198.
[18]  Farla P, Hersmus R, Geverts B, Mari PO, Nigg AL, et al. (2004) The androgen receptor ligand-binding domain stabilizes DNA binding in living cells. J Struct Biol 147: 50–61.
[19]  Cheutin T, McNairn AJ, Jenuwein T, Gilbert DM, Singh PB, et al. (2003) Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299: 721–725.
[20]  Wu Y, Kawate H, Ohnaka K, Nawata H, Takayanagi R (2006) Nuclear compartmentalization of N-CoR and its interactions with steroid receptors. Mol Cell Biol 26: 6633–6655.
[21]  Fenrick R, Wang L, Nip J, Amann JM, Rooney RJ, et al. (2000) TEL, a putative tumor suppressor, modulates cell growth and cell morphology of ras-transformed cells while repressing the transcription of stromelysin-1. Mol Cell Biol 20: 5828–5839.
[22]  Bartlett J, Blagojevic J, Carter D, Eskiw C, Fromaget M, et al.. (2006) Specialized transcription factories. Biochem Soc Symp: 67–75.
[23]  Hoogstraten D, Nigg AL, Heath H, Mullenders LH, van Driel R, et al. (2002) Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol Cell 10: 1163–1174.
[24]  van den Boom V, Kooistra SM, Boesjes M, Geverts B, Houtsmuller AB, et al. (2007) UTF1 is a chromatin-associated protein involved in ES cell differentiation. J Cell Biol 178: 913–924.
[25]  Ficz G, Heintzmann R, Arndt-Jovin DJ (2005) Polycomb group protein complexes exchange rapidly in living Drosophila. Development 132: 3963–3976.
[26]  Haaf T, Ward DC (1996) Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains. Exp Cell Res 224: 163–173.
[27]  Boccuni P, MacGrogan D, Scandura JM, Nimer SD (2003) The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6). J Biol Chem 278: 15412–15420.
[28]  Hu Y, Kireev I, Plutz M, Ashourian N, Belmont AS (2009) Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template. J Cell Biol 185: 87–100.
[29]  Nguyen VT, Giannoni F, Dubois MF, Seo SJ, Vigneron M, et al. (1996) In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin. Nucleic Acids Res 24: 2924–2929.
[30]  Karpova TS, Kim MJ, Spriet C, Nalley K, Stasevich TJ, et al. (2008) Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter. Science 319: 466–469.
[31]  Hollenhorst PC, Shah AA, Hopkins C, Graves BJ (2007) Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes Dev 21: 1882–1894.
[32]  Lopez RG, Carron C, Ghysdael J (2003) v-SRC specifically regulates the nucleo-cytoplasmic delocalization of the major isoform of TEL (ETV6). J Biol Chem 278: 41316–41325.
[33]  Roukens MG, Alloul-Ramdhani M, Vertegaal AC, Anvarian Z, Balog CI, et al. (2008) Identification of a new site of sumoylation on Tel (ETV6) uncovers a PIAS-dependent mode of regulating Tel function. Mol Cell Biol 28: 2342–2357.
[34]  Kawamata M, Pennella MA, Woo JL, Berk AJ, Koeffler HP (2012) Dominant-negative mechanism of leukemogenic PAX5 fusions. Oncogene 31: 966–977.
[35]  Buijs A, van Rompaey L, Molijn AC, Davis JN, Vertegaal AC, et al. (2000) The MN1-TEL fusion protein, encoded by the translocation (12;22)(p13;q11) in myeloid leukemia, is a transcription factor with transforming activity. Mol Cell Biol 20: 9281–9293.

Full-Text

comments powered by Disqus