All Title Author
Keywords Abstract

PLOS ONE  2008 

A Common Genomic Framework for a Diverse Assembly of Plasmids in the Symbiotic Nitrogen Fixing Bacteria

DOI: 10.1371/journal.pone.0002567

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work centres on the genomic comparisons of two closely-related nitrogen-fixing symbiotic bacteria, Rhizobium leguminosarum biovar viciae 3841 and Rhizobium etli CFN42. These strains maintain a stable genomic core that is also common to other rhizobia species plus a very variable and significant accessory component. The chromosomes are highly syntenic, whereas plasmids are related by fewer syntenic blocks and have mosaic structures. The pairs of plasmids p42f-pRL12, p42e-pRL11 and p42b-pRL9 as well large parts of p42c with pRL10 are shown to be similar, whereas the symbiotic plasmids (p42d and pRL10) are structurally unrelated and seem to follow distinct evolutionary paths. Even though purifying selection is acting on the whole genome, the accessory component is evolving more rapidly. This component is constituted largely for proteins for transport of diverse metabolites and elements of external origin. The present analysis allows us to conclude that a heterogeneous and quickly diversifying group of plasmids co-exists in a common genomic framework.

References

[1]  González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, et al. (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 103: 3834–3839.
[2]  Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, et al. (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7: R34.
[3]  Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, et al. (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7: 331–338.
[4]  Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, et al. (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110 (supplement). DNA Res 9: 225–256.
[5]  Galibert F, Finan TM, Long SR, Pühler A, Abola P, et al. (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293: 668–672.
[6]  Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, et al. (2007) Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316: 1307–1312.
[7]  Jumas-Bilak E, Michaux-Charachon S, Bourg G, Ramuz M, Allardet-Servent A (1998) Unconventional genomic organization in the alpha subgroup of the Proteobacteria. J Bacteriol 180: 2749–2755.
[8]  González V, Bustos P, Ramírez-Romero MA, Medrano-Soto A, Salgado H, et al. (2003) The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments. Genome Biol 4: R36.
[9]  Brom S, García-de los Santos A, Cervantes L, Palacios R, Romero D (2000) In Rhizobium etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons. Plasmid 44: 34–43.
[10]  Tun-Garrido C, Bustos P, González V, Brom S (2003) Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J Bacteriol 185: 1681–1692.
[11]  Brom S, Girard L, Tun-Garrido C, García-de los Santos A, Bustos P, et al. (2004) Transfer of the symbiotic plasmid of Rhizobium etli CFN42 requires cointegration with p42a, which may be mediated by site-specific recombination. J Bacteriol 186: 7538–7548.
[12]  Pérez-Mendoza D, Domínguez-Ferreras A, Mu?oz S, Soto MJ, Olivares J, et al. (2004) Identification of functional mob regions in Rhizobium etli: evidence for self-transmissibility of the symbiotic plasmid pRetCFN42d. J Bacteriol 186: 5753–5761.
[13]  Pérez-Mendoza D, Sepúlveda E, Pando V, Mu?oz S, Nogales J, et al. (2005) Identification of the rctA gene, which is required for repression of conjugative transfer of rhizobial symbiotic megaplasmids. J Bacteriol 187: 7341–7350.
[14]  Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30: 1575–1584.
[15]  Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, et al. (2005) ACT: the Artemis Comparison Tool. Bioinformatics 21: 3422–3423.
[16]  Delcher AL, Phillippy A, Carlton J, Salzberg SL (2002) Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 30: 2478–2483.
[17]  Richardson JS, Hynes MF, Oresnik IJ (2004) A genetic locus necessary for rhamnose uptake and catabolism in Rhizobium leguminosarum bv. trifolii. J Bacteriol 186: 8433–8442.
[18]  Karunakaran R, Ebert K, Harvey S, Leonard ME, Ramachandran V, et al. (2006) Thiamine is synthesized by a salvage pathway in Rhizobium leguminosarum bv. viciae strain 3841. J Bacteriol 188: 6661–6668.
[19]  Girard L, Brom S, Davalos A, López O, Soberón M, et al. (2000) Differential regulation of fixN-reiterated genes in Rhizobium etli by a novel fixL-fixK cascade. Mol Plant Microbe Interact 13: 1283–1292.
[20]  Riley M (1993) Functions of the gene products of Escherichia coli. Microbiol Rev 57: 862–952.
[21]  Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278: 631–637.
[22]  Cevallos MA, Porta H, Izquierdo J, Tun-Garrido C, García-de-los-Santos A, et al. (2002) Rhizobium etli CFN42 contains at least three plasmids of the repABC family: a structural and evolutionary analysis. Plasmid 48: 104–116.
[23]  Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22: 2196–2203.
[24]  Bueno E, Gómez-Hernández N, Girard L, Bedmar EJ, Delgado MJ (2005) Function of the Rhizobium etli CFN42 nirK gene in nitrite metabolism. Biochem Soc Trans 33: 162–163.
[25]  Yost CK, Rath AM, Noel TC, Hynes MF (2006) Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae. Microbiology 152: 2061–2074.
[26]  Sánchez-Contreras M, Bauer WD, Gao M, Robinson JB, Allan Downie J (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc Lond B Biol Sci 362: 1149–1163.
[27]  Sourjik V, Muschler P, Scharf B, Schmitt R (2000) VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti. J Bacteriol 182: 782–788.
[28]  Rosemeyer V, Michiels J, Verreth C, Vanderleyden J (1998) luxI- and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J Bacteriol 180: 815–821.
[29]  Palacios R, Flores M (2005) Genome dynamics in rhizobial organisms. In: Newton WE, Palacios R, editors. In Genomes and Genomics of Nitrogen-fixing Organisms. Springer. pp. 183–200.
[30]  Romero D, Brom S (2004) The symbiotic plasmids of the Rhizobiaceae. In: (Chapter 12),. In: Phillips G, Funnell BE, editors. Plasmid Biology: American Society for Microbiology. pp. 271–290.
[31]  Flores M, Morales L, Avila A, González V, Bustos P, et al. (2005) Diversification of DNA sequences in the symbiotic genome of Rhizobium etli. J Bacteriol 187: 7185–7192.
[32]  Reanney D (1976) Extrachromosomal elements as possible agents of adaptation and development. Bacteriol Rev 40: 552–590.
[33]  Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882.
[34]  Felsenstein J (2005) “Phylip (Phylogeny Inference Package) version 3.6.” .
[35]  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
[36]  Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13: 555–556.

Full-Text

comments powered by Disqus