All Title Author
Keywords Abstract

PLOS ONE  2008 

Prognostic Breast Cancer Signature Identified from 3D Culture Model Accurately Predicts Clinical Outcome across Independent Datasets

DOI: 10.1371/journal.pone.0002994

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Methods and Findings Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER? patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. Conclusions The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic value for both ER-positive and ER-negative breast cancer. The signature was selected using a novel biological approach and hence holds promise to represent the key biological processes of breast cancer.

References

[1]  (2007) Cancer Facts & Figures. Atlanta: American Cancer Society.
[2]  Edgren H, Kallioniemi O (2006) Integrated breast cancer genomics. Cancer Cell 10: 453–454.
[3]  Acharya CR, Hsu DS, Anders CK, Anguiano A, Salter KH, et al. (2008) Gene expression signatures, clinicopathological features, and individualized therapy in breast cancer. Jama 299: 1574–1587.
[4]  Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci U S A 103: 5923–5928.
[5]  Hinestrosa MC, Dickersin K, Klein P, Mayer M, Noss K, et al. (2007) Shaping the future of biomarker research in breast cancer to ensure clinical relevance. Nat Rev Cancer 7: 309–315.
[6]  Gruvberger SK, Ringner M, Eden P, Borg A, Ferno M, et al. (2003) Expression profiling to predict outcome in breast cancer: the influence of sample selection. Breast Cancer Res 5: 23–26.
[7]  Branca M (2003) Genetics and medicine. Putting gene arrays to the test. Science 300: 238.
[8]  Fournier MV, Martin KJ, Kenny PA, Xhaja K, Bosch I, et al. (2006) Gene expression signature in organized and growth-arrested mammary acini predicts good outcome in breast cancer. Cancer Res 66: 7095–7102.
[9]  Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A 89: 9064–9068.
[10]  Bissell MJ (2007) Modelling molecular mechanisms of breast cancer and invasion: lessons from the normal gland. Biochem Soc Trans 35: 18–22.
[11]  van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009.
[12]  Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, et al. (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671–679.
[13]  Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, et al. (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100: 8418–8423.
[14]  Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, et al. (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13: 3207–3214.
[15]  Esteva FJ, Hortobagyi GN (2004) Prognostic molecular markers in early breast cancer. Breast Cancer Res 6: 109–118.
[16]  Loi S, Piccart M, Sotiriou C (2007) The use of gene-expression profiling to better understand the clinical heterogeneity of estrogen receptor positive breast cancers and tamoxifen response. Crit Rev Oncol Hematol 61: 187–194.
[17]  van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.
[18]  Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, et al. (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98: 262–272.
[19]  Teschendorff AE, Naderi A, Barbosa-Morais NL, Pinder SE, Ellis IO, et al. (2006) A consensus prognostic gene expression classifier for ER positive breast cancer. Genome Biol 7: R101.
[20]  Chang HY, Nuyten DS, Sneddon JB, Hastie T, Tibshirani R, et al. (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci U S A 102: 3738–3743.
[21]  Fang WB, Brantley-Sieders DM, Parker MA, Reith AD, Chen J (2005) A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis. Oncogene 24: 7859–7868.
[22]  Macrae M, Neve RM, Rodriguez-Viciana P, Haqq C, Yeh J, et al. (2005) A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell 8: 111–118.
[23]  Lu M, Miller KD, Gokmen-Polar Y, Jeng MH, Kinch MS (2003) EphA2 overexpression decreases estrogen dependence and tamoxifen sensitivity. Cancer Res 63: 3425–3429.
[24]  Carles-Kinch K, Kilpatrick KE, Stewart JC, Kinch MS (2002) Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res 62: 2840–2847.
[25]  Brantley-Sieders DM, Fang WB, Hicks DJ, Zhuang G, Shyr Y, et al. (2005) Impaired tumor microenvironment in EphA2-deficient mice inhibits tumor angiogenesis and metastatic progression. Faseb J 19: 1884–1886.
[26]  Martinez-Garay I, Rustom A, Gerdes HH, Kutsche K (2006) The novel centrosomal associated protein CEP55 is present in the spindle midzone and the midbody. Genomics 87: 243–253.
[27]  Wang IC, Meliton L, Tretiakova M, Costa RH, Kalinichenko VV, et al. (2008) Transgenic expression of the forkhead box M1 transcription factor induces formation of lung tumors. Oncogene 27: 4137–4149.
[28]  Wang Z, Banerjee S, Kong D, Li Y, Sarkar FH (2007) Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res 67: 8293–8300.
[29]  Bhat UG, Zipfel PA, Tyler DS, Gartel AL (2008) Novel anticancer compounds induce apoptosis in melanoma cells. Cell Cycle 7:

Full-Text

comments powered by Disqus