All Title Author
Keywords Abstract

PLOS ONE  2008 

The Continuous Wagon Wheel Illusion and the ‘When’ Pathway of the Right Parietal Lobe: A Repetitive Transcranial Magnetic Stimulation Study

DOI: 10.1371/journal.pone.0002911

Full-Text   Cite this paper   Add to My Lib

Abstract:

A continuous periodic motion stimulus can sometimes be perceived moving in the wrong direction. These illusory reversals have been taken as evidence that part of the motion perception system samples its inputs as a series of discrete snapshots –although other explanations of the phenomenon have been proposed, that rely on the spurious activation of low-level motion detectors in early visual areas. We have hypothesized that the right inferior parietal lobe (‘when’ pathway) plays a critical role in timing perceptual events relative to one another, and thus we examined the role of the right parietal lobe in the generation of this “continuous Wagon Wheel Illusion” (c-WWI). Consistent with our hypothesis, we found that the illusion was effectively weakened following disruption of right, but not left, parietal regions by low frequency repetitive transcranial magnetic stimulation (1 Hz, 10 min). These results were independent of whether the motion stimulus was shown in the left or the right visual field. Thus, the c-WWI appears to depend on higher-order attentional mechanisms that are supported by the ‘when’ pathway of the right parietal lobe.

References

[1]  Schouten JF (1967) Subjective stroboscopy and a model of visual movement detectors. In: Wathen-Dunn I, editor. Models for the perception of speech and visual form. Cambridge, MA: MIT Press. pp. 44–45.
[2]  Purves D, Paydarfar JA, Andrews TJ (1996) The wagon wheel illusion in movies and reality. Proc Natl Acad Sci U S A 93: 3693–3697.
[3]  Kline K, Holcombe AO, Eagleman DM (2004) Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field. Vision Res 44: 2653–2658.
[4]  VanRullen R, Reddy L, Koch C (2005) Attention-driven discrete sampling of motion perception. Proc Natl Acad Sci U S A 102: 5291–5296.
[5]  Pakarian P, Yasamy MT (2003) Wagon-wheel illusion under steady illumination: real or illusory? Perception 32: 1307–1310.
[6]  Kline K, Holcombe AO, Eagleman DM (2006) Illusory motion reversal does not imply discrete processing: Reply to Rojas et al. Vision Res 46: 1158–1159.
[7]  Holcombe AO, Clifford CW, Eagleman DM, Pakarian P (2005) Illusory motion reversal in tune with motion detectors. Trends Cogn Sci 9: 559–560.
[8]  Andrews T, Purves D (2005) The wagon-wheel illusion in continuous light. Trends Cogn Sci 9: 261–263.
[9]  VanRullen R (2007) The continuous Wagon Wheel Illusion depends on, but is not identical to neuronal adaptation. Vision Res 47: 2143–2149.
[10]  Cavanagh P (1992) Attention-based motion perception. Science 257: 1563–1565.
[11]  Lu ZL, Sperling G (1995) The functional architecture of human visual motion perception. Vision Res 35: 2697–2722.
[12]  Lu ZL, Sperling G (2001) Three-systems theory of human visual motion perception: review and update. J Opt Soc Am A Opt Image Sci Vis 18: 2331–2370.
[13]  VanRullen R, Reddy L, Koch C (2006) The continuous wagon wheel illusion is associated with changes in electroencephalogram power at approximately 13 Hz. J Neurosci 26: 502–507.
[14]  VanRullen R (2006) The continuous Wagon Wheel Illusion is object-based. Vision Res 46: 4091–4095.
[15]  Andrews T, Purves D, Simpson WA, VanRullen R (2005) The wheel keeps turning: Reply to Holcombe et al. Trends Cogn Sci 9: 561.
[16]  Rojas D, Carmona-Fontaine C, Lopez-Calderon J, Aboitiz F (2006) Do discreteness and rivalry coexist in illusory motion reversals? Vision Res 46: 1155–1157.
[17]  Battelli L, Cavanagh P, Intriligator J, Tramo MJ, Henaff MA, et al. (2001) Unilateral right parietal damage leads to bilateral deficit for high-level motion. Neuron 32: 985–995.
[18]  Battelli L, Cavanagh P, Martini P, Barton JJ (2003) Bilateral deficits of transient visual attention in right parietal patients. Brain 126: 2164–2174.
[19]  Battelli L, Pascual-Leone A, Cavanagh P (2007) The ‘when’ pathway of the right parietal lobe. Trends Cogn Sci 11: 204–210.
[20]  Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Canete C, et al. (1998) Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol 15: 333–343.
[21]  Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9: 527–565.
[22]  Valero-Cabre A, Payne BR, Pascual-Leone A (2007) Opposite impact on 14C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Exp Brain Res 176: 603–615.
[23]  Kleinschmidt A, Buchel C, Zeki S, Frackowiak RS (1998) Human brain activity during spontaneously reversing perception of ambiguous figures. Proc Biol Sci 265: 2427–2433.
[24]  Lumer ED, Friston KJ, Rees G (1998) Neural correlates of perceptual rivalry in the human brain. Science 280: 1930–1934.
[25]  Carmel D, Walsh V, Lavie N, Rees GA causal role for right parietal cortex in binocular rivalry demonstrated with TMS;. 2008; Naples, Florida, USA.
[26]  Bonneh YS, Pavlovskaya M, Ring H, Soroker N (2004) Abnormal binocular rivalry in unilateral neglect: evidence for a non-spatial mechanism of extinction. Neuroreport 15: 473–477.
[27]  Mort DJ, Malhotra P, Mannan SK, Rorden C, Pambakian A, et al. (2003) The anatomy of visual neglect. Brain 126: 1986–1997.
[28]  Williams ZM, Elfar JC, Eskandar EN, Toth LJ, Assad JA (2003) Parietal activity and the perceived direction of ambiguous apparent motion. Nat Neurosci 6: 616–623.
[29]  Husain M, Shapiro K, Martin J, Kennard C (1997) Abnormal temporal dynamics of visual attention in spatial neglect patients. Nature 385: 154–156.
[30]  Battelli L, Alvarez G, Carlson T, Pascual-Leone AThe role of MT and the parietal lobe in visual tracking studied with transcranial magnetic stimulation;. 2006; Sarasota, Florida, USA.
[31]  Mottaghy FM, Doring T, Muller-Gartner HW, Topper R, Krause BJ (2002) Bilateral parieto-frontal network for verbal working memory: an interference approach using repetitive transcranial magnetic stimulation (rTMS). Eur J Neurosci 16: 1627–1632.
[32]  Hilgetag CC, Theoret H, Pascual-Leone A (2001) Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nat Neurosci 4: 953–957.

Full-Text

comments powered by Disqus