All Title Author
Keywords Abstract

PLOS ONE  2008 

High-Resolution, In Vivo Magnetic Resonance Imaging of Drosophila at 18.8 Tesla

DOI: 10.1371/journal.pone.0002817

Full-Text   Cite this paper   Add to My Lib

Abstract:

High resolution MRI of live Drosophila was performed at 18.8 Tesla, with a field of view less than 5 mm, and administration of manganese or gadolinium-based contrast agents. This study demonstrates the feasibility of MR methods for imaging the fruit fly Drosophila with an NMR spectrometer, at a resolution relevant for undertaking future studies of the Drosophila brain and other organs. The fruit fly has long been a principal model organism for elucidating biology and disease, but without capabilities like those of MRI. This feasibility marks progress toward the development of new in vivo research approaches in Drosophila without the requirement for light transparency or destructive assays.

References

[1]  Selenko P, Serber Z, Gadea B, Ruderman J, Wagner G (2006) Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes. Proc Natl Acad Sci 103(32): 11904–9.
[2]  Mason GF, Krystal JH (2006) MR spectroscopy: its potential role for drug development for the treatment of psychiatric diseases. NMR Biomed 19(6): 690–701.
[3]  Raghunand N (2006) Tissue pH measurement by magnetic resonance spectroscopy and imaging. Methods Mol Med 124: 347–64.
[4]  Raghunand N, Jagadish B, Trouard TP, Galons JP, Gillies RJ, et al. (2006) Redox-sensitive contrast agents for MRI based on reversible binding of thiols to serum albumin. Magn Reson Med 55(6): 1272–80.
[5]  Gilad A, McMahon MT, Walczak P, Winnard PT, Raman V, et al. (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotech 25: 217–219.
[6]  Tyszka JM, Fraser SE, Jacobs RE (2005) Magnetic resonance microscopy: recent advances and applications. Curr Opin Biotechnol 16(1): 93–9.
[7]  Lee SC, Kim K, Kim J, Lee S, Han Yi J, et al. (2001) One micrometer resolution NMR microscopy. J Magn Reson 150(2): 207–13.
[8]  Hart AG, Bowtell RW, K?ckenberger W, Wenseleers T, Ratnieks FLW (2003) Magnetic resonance imaging in entomology: a critical review. J Insect Sci 3: 5.
[9]  Serber Z, Corsini L, Durst F, D?tsch V (2005) In-cell NMR spectroscopy. Methods Enzymol 394: 17–41.
[10]  Lee SC, Cho J-H, Mietchen D, Kim Y-S, Hong KS, et al. (2006) Subcellular In Vivo 1H MR Spectroscopy of Xenopus laevis Oocytes. Biophys J 90(5): 1797–1803.
[11]  Grant SC, Aiken NR, Plant HD, Gibbs S, Mareci TH, et al. (2000) NMR spectroscopy of single neurons. Magn Reson Med 44(1): 19–22.
[12]  Shen J, Yanga J, Choic IY, Shizhe , Lib S, et al. (2004) A new strategy for in vivo spectral editing. Application to GABA editing using selective homonuclear polarization transfer spectroscopy. J Magn Reson 170: 290–298.
[13]  Haddad D (2004) NMR imaging of the honeybee brain. J Insect Sci 4: 7.
[14]  Jasanoff A, Sun PZ (2002) In vivo magnetic resonance microscopy of brain structure in unanesthetised flies. J Magn Reson 158(1–2): 79–85.
[15]  Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11(6): 1114–25.
[16]  Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6(1): 9–23.
[17]  Ruden DM, De Luca M, Garfinkel MD, Bynum KL, Lu X (2005) Drosophila nutrigenomics can provide clues to human gene-nutrient interactions. Annu Rev Nutr 25: 499–522.
[18]  Xun Z, Sowell RA, Kaufman TC, Clemmer DE (2007) Protein expression in a Drosophila model of Parkinson's disease. J Proteome Res 6(1): 348–57.
[19]  Manev H, Dimitrijevic N, Dzitoyeva S (2003) Techniques: fruit flies as models for neuropharmacological research. Trends Pharmacol Sci 24(1): 41–3.
[20]  Null B, Arbeitman MN, Furlong EE, Imam F, Johnson E, et al. (2002) Gene expression during the life cycle of Drosophila melanogaster. Science 297(5590): 2270–5.
[21]  Engstrom Y, Loseva O, Theopold U (2004) Proteomics of the Drosophila immune response. Trends Biotechnol 22(11): 600–5.
[22]  Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, et al. (2003) A protein interaction map of Drosophila melanogaster. Science 302(5651): 1727–36.
[23]  Lilley KS, Griffiths DR (2003) Proteomics in Drosophila melanogaster. Brief Funct Genomic Proteomic 2(2): 106–13.
[24]  Schoofs L, Baggerman G (2003) Peptidomics in Drosophila melanogaster. Brief Funct Genomic Proteomic 2(2): 114–20.
[25]  Taraszka JA, Kurulugama R, Sowell RA, Valentine SJ, Koeniger SL, et al. (2005) Mapping the proteome of Drosophila melanogaster: analysis of embryos and adult heads by LC-IMS-MS methods. J Proteome Res 4(4): 1223–37.
[26]  Micheva KD, Smith SJ (2007) Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits. Neuron 55: 25–36.
[27]  Gandhi S, Stryker M (2007) Imaging the functional plasticity of identified cell types in visual cortex. J Vision 7(15): 42.
[28]  Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI Pulse Sequences. Academic Press. ISBN: 0-120-92861-2.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal