全部 标题 作者
关键词 摘要

PLOS ONE  2012 

CD154 and IL-2 Signaling of CD4+ T Cells Play a Critical Role in Multiple Phases of CD8+ CTL Responses Following Adenovirus Vaccination

DOI: 10.1371/journal.pone.0047004

Full-Text   Cite this paper   Add to My Lib

Abstract:

Adenoviral (AdV) vectors represent most commonly utilized viral vaccines in clinical studies. While the role of CD8+ cytotoxic T lymphocyte (CTL) responses in mediating AdV-induced protection is well understood, the involvement of CD4+ T cell-provided signals in the development of functional CD8+ CTL responses remain unclear. To explore CD4+ T helper signals required for AdVova-stimulated CTL responses, we established an adoptive transfer system by transferring CD4+ T cells derived from various knock out and transgenic mice into wild-type and/or CD4-deficient animals, followed by immunizing with recombinant ovalbumin (OVA)-expressing AdVova vector. Without CD4+ T help, both primary and memory CTL responses were greatly reduced in this model, and were associated with increased PD-1 expression. The provision of OVA-specific CD4+ T help in CD4+ T cell-deficient mice restored AdVova-induced primary CTL responses, and supported survival and recall responses of AdVova-stimulated memory CTLs. These effects were specifically mediated by CD4+ T cell-produced IL-2 and CD154 signals. Adoptive transfer of “helped” or “unhelped” effector and memory CTLs into na?ve CD4+ T cell-deficient or -sufficient mice also revealed an additional role for polyclonal CD4+ T cell environment in the survival of AdVova-stimulated CTLs, partially explaining the extension of CTL contraction phase. Finally, during recall responses, CD4+ T cell environment, particularly involving memory CD4+ T cells, greatly enhanced expansion of memory CTLs. Collectively, our data strongly suggest a critical role for CD4+ T help in multiple phases of AdV-stimulated CTL responses, and could partially explain certain failures in AdV-based immunization trials targeting malignant tumors and chronic diseases that are often associated with compromised CD4+ T cell population and function.

References

[1]  Novy P, Quigley M, Huang X, Yang Y (2007) CD4 T cells are required for CD8 T cell survival during both primary and memory recall responses. J Immunol 179: 8243–8251.
[2]  van Stipdonk MJ, Lemmens EE, Schoenberger SP (2001) Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol 2: 423–429.
[3]  van Stipdonk MJ, Hardenberg G, Bijker MS, Lemmens EE, Droin NM, et al. (2003) Dynamic programming of CD8+ T lymphocyte responses. Nat Immunol 4: 361–365.
[4]  Wiesel M, Joller N, Ehlert AK, Crouse J, Sporri R, et al. (2010) Th cells act via two synergistic pathways to promote antiviral CD8+ T cell responses. J Immunol 185: 5188–5197.
[5]  Umeshappa CS, Xiang J (2011) Regulators of T-cell memory generation: TCR signals versus CD4+ help? Immunol Cell Biol 89: 578–580.
[6]  Belz GT, Wodarz D, Diaz G, Nowak MA, Doherty PC (2002) Compromised influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice. J Virol 76: 12388–12393.
[7]  Shedlock DJ, Shen H (2003) Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300: 337–339.
[8]  Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, et al. (2003) CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421: 852–856.
[9]  Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, et al. (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393: 478–480.
[10]  Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393: 480–483.
[11]  Smith CM, Wilson NS, Waithman J, Villadangos JA, Carbone FR, et al. (2004) Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol 5: 1143–1148.
[12]  Rajasagi NK, Kassim SH, Kollias CM, Zhao X, Chervenak R, et al. (2009) CD4+ T cells are required for the priming of CD8+ T cells following infection with herpes simplex virus type 1. J Virol 83: 5256–5268.
[13]  Phares TW, Stohlman SA, Hwang M, Min B, Hinton DR, et al. (2012) CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis. J Virol 86: 2416–2427.
[14]  Umeshappa CS, Huang H, Xie Y, Wei Y, Mulligan SJ, et al. (2009) CD4+ Th-APC with acquired peptide/MHC class I and II complexes stimulate type 1 helper CD4+ and central memory CD8+ T cell responses. J Immunol 182: 193–206.
[15]  Thomsen AR, Nansen A, Christensen JP, Andreasen SO, Marker O (1998) CD40 ligand is pivotal to efficient control of virus replication in mice infected with lymphocytic choriomeningitis virus. J Immunol 161: 4583–4590.
[16]  Borrow P, Tishon A, Lee S, Xu J, Grewal IS, et al. (1996) CD40L-deficient mice show deficits in antiviral immunity and have an impaired memory CD8+ CTL response. J Exp Med 183: 2129–2142.
[17]  Lee BO, Hartson L, Randall TD (2003) CD40-deficient, influenza-specific CD8 memory T cells develop and function normally in a CD40-sufficient environment. J Exp Med 198: 1759–1764.
[18]  Sun JC, Bevan MJ (2004) Cutting edge: long-lived CD8 memory and protective immunity in the absence of CD40 expression on CD8 T cells. J Immunol 172: 3385–3389.
[19]  Yang Y, Xiang Z, Ertl HC, Wilson JM (1995) Upregulation of class I major histocompatibility complex antigens by interferon gamma is necessary for T-cell-mediated elimination of recombinant adenovirus-infected hepatocytes in vivo. Proc Natl Acad Sci U S A 92: 7257–7261.
[20]  Yang Y, Ertl HC, Wilson JM (1994) MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity 1: 433–442.
[21]  Yang TC, Millar J, Groves T, Zhou W, Grinshtein N, et al. (2007) On the role of CD4+ T cells in the CD8+ T-cell response elicited by recombinant adenovirus vaccines. Mol Ther 15: 997–1006.
[22]  Holst PJ, Bartholdy C, Stryhn A, Thomsen AR, Christensen JP (2007) Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens. J Gen Virol 88: 1708–1716.
[23]  Mu J, Jeyanathan M, Shaler CR, Horvath C, Damjanovic D, et al. (2010) Respiratory mucosal immunization with adenovirus gene transfer vector induces helper CD4 T cell-independent protective immunity. J Gene Med 12: 693–704.
[24]  Yang TC, Millar J, Groves T, Grinshtein N, Parsons R, et al. (2006) The CD8+ T cell population elicited by recombinant adenovirus displays a novel partially exhausted phenotype associated with prolonged antigen presentation that nonetheless provides long-term immunity. J Immunol 176: 200–210.
[25]  Tatsis N, Fitzgerald JC, Reyes-Sandoval A, Harris-McCoy KC, Hensley SE, et al. (2007) Adenoviral vectors persist in vivo and maintain activated CD8+ T cells: implications for their use as vaccines. Blood 110: 1916–1923.
[26]  Frahm N, DeCamp AC, Friedrich DP, Carter DK, Defawe OD, et al. (2012) Human adenovirus-specific T cells modulate HIV-specific T cell responses to an Ad5-vectored HIV-1 vaccine. J Clin Invest 122: 359–367.
[27]  Youngblood B, Oestreich KJ, Ha SJ, Duraiswamy J, Akondy RS, et al. (2011) Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 35: 400–412.
[28]  Holst PJ, Christensen JP, Thomsen AR (2011) Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice. J Immunol 186: 3997–4007.
[29]  Sorensen MR, Holst PJ, Pircher H, Christensen JP, Thomsen AR (2009) Vaccination with an adenoviral vector encoding the tumor antigen directly linked to invariant chain induces potent CD4(+) T-cell-independent CD8(+) T-cell-mediated tumor control. Eur J Immunol 39: 2725–2736.
[30]  Holst PJ, Sorensen MR, Mandrup Jensen CM, Orskov C, Thomsen AR, et al. (2008) MHC class II-associated invariant chain linkage of antigen dramatically improves cell-mediated immunity induced by adenovirus vaccines. J Immunol 180: 3339–3346.
[31]  Kish DD, Gorbachev AV, Fairchild RL (2007) Regulatory function of CD4+CD25+ T cells from Class II MHC-deficient mice in contact hypersensitivity responses. J Leukoc Biol 82: 85–92.
[32]  Lore K, Adams WC, Havenga MJ, Precopio ML, Holterman L, et al. (2007) Myeloid and plasmacytoid dendritic cells are susceptible to recombinant adenovirus vectors and stimulate polyfunctional memory T cell responses. J Immunol 179: 1721–1729.
[33]  Kushwah R, Cao H, Hu J (2008) Characterization of pulmonary T cell response to helper-dependent adenoviral vectors following intranasal delivery. J Immunol 180: 4098–4108.
[34]  Martin B, Bourgeois C, Dautigny N, Lucas B (2003) On the role of MHC class II molecules in the survival and lymphopenia-induced proliferation of peripheral CD4+ T cells. Proc Natl Acad Sci U S A 100: 6021–6026.
[35]  Ryu SJ, Jung KM, Yoo HS, Kim TW, Kim S, et al. (2009) Cognate CD4 help is essential for the reactivation and expansion of CD8 memory T cells directed against the hematopoietic cell-specific dominant minor histocompatibility antigen, H60. Blood 113: 4273–4280.
[36]  Krawczyk CM, Shen H, Pearce EJ (2007) Memory CD4 T cells enhance primary CD8 T-cell responses. Infect Immun 75: 3556–3560.
[37]  Fuse S, Tsai CY, Molloy MJ, Allie SR, Zhang W, et al. (2009) Recall responses by helpless memory CD8+ T cells are restricted by the up-regulation of PD-1. J Immunol 182: 4244–4254.
[38]  Bourgeois C, Rocha B, Tanchot C (2002) A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 297: 2060–2063.
[39]  Xiang J, Huang H, Liu Y (2005) A new dynamic model of CD8+ T effector cell responses via CD4+ T helper-antigen-presenting cells. J Immunol 174: 7497–7505.
[40]  de Goer de Herve MG, Dembele B, Vallee M, Herr F, Cariou A, et al. (2011) Direct CD4 help provision following interaction of memory CD4 and CD8 T cells with distinct antigen-presenting dendritic cells. J Immunol 185: 1028–1036.
[41]  Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR (1997) Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med 186: 65–70.
[42]  Andreasen SO, Christensen JE, Marker O, Thomsen AR (2000) Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8+ effector T cell responses. J Immunol 164: 3689–3697.
[43]  Borrow P, Tough DF, Eto D, Tishon A, Grewal IS, et al. (1998) CD40 ligand-mediated interactions are involved in the generation of memory CD8(+) cytotoxic T lymphocytes (CTL) but are not required for the maintenance of CTL memory following virus infection. J Virol 72: 7440–7449.
[44]  Feau S, Arens R, Togher S, Schoenberger SP (2011) Autocrine IL-2 is required for secondary population expansion of CD8(+) memory T cells. Nat Immunol 12: 908–913.
[45]  Wilson EB, Livingstone AM (2008) Cutting edge: CD4+ T cell-derived IL-2 is essential for help-dependent primary CD8+ T cell responses. J Immunol 181: 7445–7448.
[46]  D’Souza WN, Lefrancois L (2003) IL-2 is not required for the initiation of CD8 T cell cycling but sustains expansion. J Immunol 171: 5727–5735.
[47]  Novy P, Huang X, Leonard WJ, Yang Y (2011) Intrinsic IL-21 signaling is critical for CD8 T cell survival and memory formation in response to vaccinia viral infection. J Immunol 186: 2729–2738.
[48]  Rapetti L, Meunier S, Pontoux C, Tanchot C (2008) CD4 help regulates expression of crucial genes involved in CD8 T cell memory and sensitivity to regulatory elements. J Immunol 181: 299–308.
[49]  Bassett JD, Yang TC, Bernard D, Millar JB, Swift SL, et al. (2011) CD8+ T-cell expansion and maintenance after recombinant adenovirus immunization rely upon cooperation between hematopoietic and nonhematopoietic antigen-presenting cells. Blood 117: 1146–1155.
[50]  Sun JC, Williams MA, Bevan MJ (2004) CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5: 927–933.
[51]  de Goer de Herve MG, Cariou A, Simonetta F, Taoufik Y (2008) Heterospecific CD4 help to rescue CD8 T cell killers. J Immunol 181: 5974–5980.
[52]  Aubert RD, Kamphorst AO, Sarkar S, Vezys V, Ha SJ, et al. (2011) Antigen-specific CD4 T-cell help rescues exhausted CD8 T cells during chronic viral infection. Proc Natl Acad Sci U S A 108: 21182–21187.
[53]  Butler NS, Moebius J, Pewe LL, Traore B, Doumbo OK, et al. (2011) Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat Immunol 13: 188–195.
[54]  Lichterfeld M, Kaufmann DE, Yu XG, Mui SK, Addo MM, et al. (2004) Loss of HIV-1-specific CD8+ T cell proliferation after acute HIV-1 infection and restoration by vaccine-induced HIV-1-specific CD4+ T cells. J Exp Med 200: 701–712.
[55]  Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, et al. (2008) Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med 358: 2698–2703.
[56]  Kahn M, Sugawara H, McGowan P, Okuno K, Nagoya S, et al. (1991) CD4+ T cell clones specific for the human p97 melanoma-associated antigen can eradicate pulmonary metastases from a murine tumor expressing the p97 antigen. J Immunol 146: 3235–3241.
[57]  Kushwah R, Cao H, Hu J (2007) Potential of helper-dependent adenoviral vectors in modulating airway innate immunity. Cell Mol Immunol 4: 81–89.
[58]  Kanerva A, Wang M, Bauerschmitz GJ, Lam JT, Desmond RA, et al. (2002) Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses. Mol Ther 5: 695–704.
[59]  Herzog R, editor (2009) Gene Therapy Immunology: John Wiley & Sons. Inc. 398 p.
[60]  Cohen J (2005) HIV/AIDS. Hedged bet: an unusual AIDS vaccine trial. Science 309: 1003.
[61]  Shiver JW, Emini EA (2004) Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors. Annu Rev Med 55: 355–372.
[62]  Benlahrech A, Harris J, Meiser A, Papagatsias T, Hornig J, et al. (2009) Adenovirus vector vaccination induces expansion of memory CD4 T cells with a mucosal homing phenotype that are readily susceptible to HIV-1. Proc Natl Acad Sci U S A 106: 19940–19945.
[63]  Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, et al. (2008) Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372: 1881–1893.
[64]  Fitzgerald DW, Janes H, Robertson M, Coombs R, Frank I, et al. (2011) An Ad5-vectored HIV-1 vaccine elicits cell-mediated immunity but does not affect disease progression in HIV-1-infected male subjects: results from a randomized placebo-controlled trial (the Step study). J Infect Dis 203: 765–772.
[65]  Frahm N, Decamp AC, Friedrich DP, Carter DK, Defawe OD, et al. (2012) Human adenovirus-specific T cells modulate HIV-specific T cell responses to an Ad5-vectored HIV-1 vaccine. J Clin Invest 122: 359–367.
[66]  Chen Y, Xie Y, Chan T, Sami A, Ahmed S, et al. (2011) Adjuvant effect of HER-2/neu-specific adenoviral vector stimulating CD8 T and natural killer cell responses on anti-HER-2/neu antibody therapy for well-established breast tumors in HER-2/neu transgenic mice. Cancer Gene Ther 18: 489–499.
[67]  Shi M, Hao S, Chan T, Xiang J (2006) CD4(+) T cells stimulate memory CD8(+) T cell expansion via acquired pMHC I complexes and costimulatory molecules, and IL-2 secretion. J Leukoc Biol 80: 1354–1363.

Full-Text

comments powered by Disqus