[1] | Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation. Hoboken, NJ: John Wiley & Sons.
|
[2] | Huber GC, Crosby EC (1933) A phylogenetic consideration of the optic tectum. Proc Natl Acad Sci USA 19: 15–22.
|
[3] | Northcutt GR (2002) Understanding vertebrate brain evolution. Integ Comp Biol 42: 743–756.
|
[4] | Eldredge N, Cracraft J (1980) Phylogenetic patterns and the evolutionary process. New York: Columbia University Press.
|
[5] | Smeets WJA (1981) Retinofugal pathways in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. J Comp Neurol 195: 1–11.
|
[6] | Ebbesson SOE (1984) Structure and connections of the optic tectum in elasmobranchs. In: Vanegas H, editor. Comparative neurology of the optic tectum. New York: Plenum Press. pp. 33–46.
|
[7] | Ramón P (1899) El lóbulo de los peces (teleosteos). Rev Trimestr Micrograf 4: 87–107.
|
[8] | Northcutt RG (1983) Evolution of the optic tectum in ray-finned fishes. In: Davis RD, Northcutt RG, editors. Fish neurobiology. II. Higher brain areas and functions. Ann Arbor, MI: University of Michigan Press. pp. 1–42.
|
[9] | Repérant J, Miceli D, Rio P, Peyrichoux J, Pierre J, Kirpitchnikova E (1986) The anatomical organization of retinal projections in the shark Scyliorhinus canicula with special reference to the evolution of the selachian primary visual system. Brain Res Rev 11: 227–248.
|
[10] | Manso MJ, Anadón R (1991) The optic tectum of the dogfish Scyliorhinus canicula L: A Golgi study. J Comp Neurol 307: 335–349.
|
[11] | Jacobson M, Gaze RM (1965) Selection of appropriate tectal connections by regenerating optic nerve fibers in adult goldfish. Exp Neurol 13: 418–430.
|
[12] | Schwassman HO, Kruger L (1965) Organization of the visual projection upon the optic tectum of some freshwater fish. J Comp Neurol 113–126.
|
[13] | Gaze RM, Keating MJ (1969) The depth distribution of visual units in the tectum of the frog following regeneration of the optic nerve. J Physiol 200: 128P–129P.
|
[14] | Gaze RM, Sharma SC (1970) Axial differences in the reinnervation of the goldfish optic tectum by regenerating optic nerve fibres. Exp Brain Res 10: 171–181.
|
[15] | Huber R, Rylander MK (1992) Brain morphology and turbidity preference in Notropis and related genera (Cyprinidae, Teleostei). In: Balon EK, Wieser W, Schiemer F, Goldschmidt A, Kotrschal K, editors. Environmental biology of fishes 33. Dodrecht: Kluwer Academic Publishers. pp. 153–165.
|
[16] | Huber R, van Staaden M, Kaufman LS, Liem KF (1997) Microhabitat use, trophic patterns and the evolution of brain structure in African cichlids. Brain Behav Evol 50: 167–18.
|
[17] | Kotrschal K, van Staaden MJ, Huber R (1998) Fish brains: Evolution and environmental relationships. Rev Fish Biol Fish 8: 373–408.
|
[18] | Striedter G (2005) Principles of brain evolution. Sunderland, MA: Sinauer Press.
|
[19] | Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57: 717–745.
|
[20] | Maddison WP, Maddison DR (2007) Mesquite: A modular system for evolutionary analysis. Version 2.0. Available in http://mesquiteproject.org.
|
[21] | Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–525.
|
[22] | Thompson JD, Higgins DG, Gibson TJ (1999) CLUSTAL W: Improving the sensitivity of progressive multiple sequences alignment through sequence weighting, position specific gap penalties, and weight matrix choice. Nucleic Acids Res 22: 4673–4680.
|
[23] | Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125: 1–15.
|
[24] | Garland T Jr, Ives AR (2000) Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155: 346–364.
|
[25] | Garland T Jr, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42: 265–292.
|
[26] | Felsenstein J (1988) Phylogenies and quantitative characters. Annu Rev Ecol Syst 19: 445–471.
|
[27] | Rohlf FJ, Sokal RR (1981) Statistical tables, 2nd edition. New York: W. H. Freeman.
|
[28] | Heier P (1948) Fundamental principles in the structure of the brain. A study of the brain of Petromyzon fluviatilis. Acta Anat 5: 7–213.
|
[29] | Kennedy MC, Rubinson K (1984) Development and structure of the lamprey optic tectum. In: Vanegas H, editor. Comparative neurology of the optic tectum. NY: Plenum Press. pp. 1–13.
|
[30] | Clairambault P, Capanna E, Chanconie M, Pinganaud G (1974) Architectural pattern of the diencephalon and mesencephalon of the African lungfish Protopterus dolloi. Boll Zool 41: 107–122.
|
[31] | Iwahori NK, Nakamura K, Tsuda A (1996) Neuronal organization of the optic tectum in the hagfish, Eptatretus burgeri: A Golgi study. Anat Embryol 193: 271–279.
|
[32] | Farner H-P (1978) Untersuchungen zur Embryoanalentwicklung des Gehirns von Scyliorhinus canicula (L). II. Das Tectum opticum und dessen Stratification. J Hirnfirsch 19: 333–344.
|
[33] | Leghissa S (1955) La struttura microscopica e la citoarchitettonica del tetto ottico dei pesci teleostei. Z Anat Entw Gesh 118: 427–463.
|
[34] | Meek J, Schellart NAM (1978) A Golgi study of goldfish optic tectum. J Comp Neurol 182: 89–122.
|
[35] | Odenthal J, van Eeden FJM, Haffter P, Ingham PW, Nüsslein-Volhard C (2000) Two distinct cell populations in the floor plate of the zebrafish are induced by different pathways. Dev Biol 219: 350–363.
|
[36] | Lázár G, Losonczy A (1999) NADPH-diaphorase-positive neurons and pathways in the brain of the frog Rana esculenta. Anat Embryol (Berlin) 199: 185–198.
|
[37] | Baez J, Monzón-Mayor M, Yances C, Romero-Alemán MM, Arbelo-Gálvan JF, Puelles L (2003) Neuronal differentiation patterns in the optic tectum of the lizard Gallotia galloti. Brain Res 9715: 48–65.
|
[38] | Puelles L, Bendala MC (1978) Differentiation of neuroblasts in the chick optic tectum up to eight days of incubation: A Golgi study. Neuroscience 3: 307–325.
|
[39] | Gray GE, Sanes JR (1992) Lineage of radial glia in the chicken optic tectum. Development 114: 271–283.
|
[40] | Scicolone G, Pereyra-Alfonso S, Brusco A, Saavedra JP, Flores V (2001) Development of the laminated pattern of the chick tectum opticum. Brain Res Bull 55: 695–710.
|
[41] | Pasquale EB (2005) Eph receptor signalling casts a wide net on cell behaviour.
|
[42] | Hatten ME (1999) Central nervous system neuronal migration. Ann Rev Neurosci 22: 511–539.
|
[43] | Nieuwenhuys R, ten Dokelaar HJ, Nicholson C (1998) The central nervous system of vertebrates. Berlin/Heilderberg/New York: Springer.
|
[44] | Puelles L, Medina L (2002) Field homology as a way to reconcile genetic and developmental variability with adult homology. Brain Res Bull 57: 243–255.
|
[45] | Hall BK (2003) Unlocking the black box between genotype and phenotype: Cell condensations as morphogenetic (modular) units. Biol Phil 18: 219–247.
|
[46] | Redies C, Takeichi M (1996) Cadherins in the developing central nervous system: An adhesive code for segmental and functional subdivisions. Dev Biol 180: 413–423.
|
[47] | Nollet F, Kools P, van Roy F (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299: 551–572.
|