All Title Author
Keywords Abstract

PLOS ONE  2012 

The Complete Mitochondrial Genome of Galba pervia (Gastropoda: Mollusca), an Intermediate Host Snail of Fasciola spp

DOI: 10.1371/journal.pone.0042172

Full-Text   Cite this paper   Add to My Lib


Complete mitochondrial (mt) genomes and the gene rearrangements are increasingly used as molecular markers for investigating phylogenetic relationships. Contributing to the complete mt genomes of Gastropoda, especially Pulmonata, we determined the mt genome of the freshwater snail Galba pervia, which is an important intermediate host for Fasciola spp. in China. The complete mt genome of G. pervia is 13,768 bp in length. Its genome is circular, and consists of 37 genes, including 13 genes for proteins, 2 genes for rRNA, 22 genes for tRNA. The mt gene order of G. pervia showed novel arrangement (tRNA-His, tRNA-Gly and tRNA-Tyr change positions and directions) when compared with mt genomes of Pulmonata species sequenced to date, indicating divergence among different species within the Pulmonata. A total of 3655 amino acids were deduced to encode 13 protein genes. The most frequently used amino acid is Leu (15.05%), followed by Phe (11.24%), Ser (10.76%) and IIe (8.346%). Phylogenetic analyses using the concatenated amino acid sequences of the 13 protein-coding genes, with three different computational algorithms (maximum parsimony, maximum likelihood and Bayesian analysis), all revealed that the families Lymnaeidae and Planorbidae are closely related two snail families, consistent with previous classifications based on morphological and molecular studies. The complete mt genome sequence of G. pervia showed a novel gene arrangement and it represents the first sequenced high quality mt genome of the family Lymnaeidae. These novel mtDNA data provide additional genetic markers for studying the epidemiology, population genetics and phylogeographics of freshwater snails, as well as for understanding interplay between the intermediate snail hosts and the intra-mollusca stages of Fasciola spp..


[1]  Relf V, Good B, Hanrahan JP, McCarthy E, Forbes AB, et al. (2011) Temporal studies on Fasciola hepatica in Galba truncatula in the west of Ireland. Vet Parasitol 175: 287–292.
[2]  Kaset C, Eursitthichai V, Vichasri-Grams S, Viyanant V, Grams R (2010) Rapid identification of lymnaeid snails and their infection with Fasciola gigantica in Thailand. Exp Parasitol 126: 482–488.
[3]  Zhang HY, Kraemer F, Shen YL, Gu YF, Shen T, et al. (1999) Detection of Fasciola hepatica in galba pervia by dot hybridization. Chin j vet parastiol 1: 1–3 (in Chinese).
[4]  Ai L, Weng YB, Elsheikha HM, Zhao GH, Alasaad S, et al. (2011) Genetic diversity and relatedness of Fasciola spp. isolates from different hosts and geographic regions revealed by analysis of mitochondrial DNA sequences. Vet Parasitol 181: 329–334.
[5]  Alasaad S, Soriguer RC, Abu-Madi M, El Behairy A, Jowers MJ, et al. (2011) A TaqMan real-time PCR-based assay for the identification of Fasciola spp. Vet Parasitol 179: 266–271.
[6]  Lin RQ, Dong SJ, Nie K, Wang CR, Song HQ, et al. (2007) Sequence analysis of the first internal transcribed spacer of rDNA supports the existence of the intermediate Fasciola between F. hepatica and F. gigantica in mainland China. Parasitol Res 101: 813–817.
[7]  Spithill TW, Dalton JP (1998) Progress in development of liver fluke vaccines. Parasitol Today 14: 224–228.
[8]  Mas-Coma S, Bargues MD, Valero MA (2005) Fascioliasis and other plant-borne trematode zoonoses. Int J Parasitol 35: 1255–1278.
[9]  Wolstenholme DR (1992) Animal mitochondrial DNA, structure and evolution. Int Rev Cytol 141: 173–216.
[10]  Li MW, Lin RQ, Song HQ, Wu XY, Zhu XQ (2008) The complete mitochondrial genomes for three Toxocara species of human and animal health significance. BMC Genomics 9: e224.
[11]  Liu GH, Lin RQ, Li MW, Liu W, Liu Y, et al. (2011) The complete mitochondrial genomes of three cestode species of Taenia infecting animals and humans. Mol Biol Rep 38: 2249–2256.
[12]  Margam VM, Coates BS, Hellmich RL, Agunbiade T, Seufferheld MJ, et al. (2011) Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). PLoS One 6: e16444.
[13]  Tan HW, Liu GH, Dong X, Lin RQ, Song HQ, et al. (2011) The Complete Mitochondrial Genome of the Asiatic Cavity-nesting Honeybee Apis cerana (Hymenoptera: Apidae). PLoS One 6: e23008.
[14]  Wei SJ, Shi M, Chen XX, Sharkey MJ, van Achterberg C, et al. (2010) New views on strand asymmetry in insect mitochondrial genomes. PLoS One 5: e12708.
[15]  Lin RQ, Qiu LL, Liu GH, Wu XY, Weng YB, et al. (2011) Characterization of the complete mitochondrial genomes of five Eimeria species from domestic chickens. Gene 480: 28–33.
[16]  Kurabayashi A, Ueshima R (2000) Complete sequence of the mitochondrial DNA of the primitive opisthobranch gastropod Pupa strigosa: systematic implication of the genome organization. Mol Biol Evol 17: 266–277.
[17]  Hoffmann RJ, Boore JL, Brown WM (1992) A novel mitochondrial genome organization for the blue mussel, Mytilus edulis. Genetics 131: 397–412.
[18]  Ren J, Shen X, Jiang F, Liu B (2010) The mitochondrial genomes of two scallops, Argopecten irradians and Chlamys farreri (Mollusca: Bivalvia): the most highly rearranged gene order in the family Pectinidae. J Mol Evol 70: 57–68.
[19]  Boettger C (1955) Die Taxonomie der euthyneuren Schnecken. Zool Anz 18: 253–280.
[20]  Grande C, Templado J, Cervera JL, Zardoya R (2002) The complete mitochondrial genome of the Nudibranch Roboastra europaea (Mollusca: Gastropoda) supports the monophyly of Opisthobranchs. Mol Biol Evol 19: 1672–1685.
[21]  Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27: 1767–1780.
[22]  Feldmeyer B, Hoffmeier K, Pfenninger M (2010) The complete mitochondrial genome of Radix balthica (Pulmonata, Basommatophora), obtained by low coverage shot gun next generation sequencing. Mol Phylogenet Evol 57: 1329–1333.
[23]  DeJong RJ, Emery AM, Adema CM (2004) The mitochondrial genome of Biomphalaria glabrata (Gastropoda: Basommatophora), intermediate host of Schistosoma mansoni. J Parasitol 90: 991–997.
[24]  Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41: 353–358.
[25]  Hassanin A, Léger N, Deutsch J (2005) Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences. Syst Biol 54: 277–298.
[26]  Yang JS, Nagasawa H, Fujiwara Y, Tsuchida S, Yang WJ (2008) The complete mitochondrial genome sequence of the hydrothermal vent galatheid crab Shinkaia crosnieri (Crustacea: Decapoda: Anomura): a novel arrangement and incomplete tRNA suite. BMC Genomics 9: 257.
[27]  Torricelli G, Carapelli A, Convey P, Nardi F, Boore JL, et al. (2010) High divergence across the whole mitochondrial genome in the “pan-Antarctic” springtail Friesea grisea: evidence for cryptic species? Gene 449: 30–40.
[28]  Wei SJ, Shi M, Sharkey MJ, Achterberg C, Chen XX (2010) Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects. BMC Genomics 11: 371.
[29]  Rawlings TA, MacInnis MJ, Bieler R, Boore JL, Collins TM (2010) Sessile snails, dynamic genomes: gene rearrangements within the mitochondrial genome of a family of caenogastropod mollusks. BMC Genomics 11: 440.
[30]  Knudsen B, Kohn AB, Nahir B, McFadden CS, Moroz LL (2006) Complete DNA sequence of the mitochondrial genome of the sea-slug, Aplysia californica: conservation of the gene order in Euthyneura. Mol Phylogenet Evol 38: 459–469.
[31]  Ki JS, Park HG, Lee JS (2009) The complete mitochondrial genome of the cyclopoid copepod Paracyclopina nana: a highly divergent genome with novel gene order and atypical gene numbers. Gene 435: 13–22.
[32]  Dowton M, Castro LR, Campbell SL, Bargon SD, Austin AD (2003) Frequent mitochondrial gene rearrangements at the hymenopteran nad3-nad5 junction. J Mol Evol 56: 517–526.
[33]  Cantatore P, Gadaleta MN, Roberti M, Saccone C, Wilson AC (1987) Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature 329: 853–855.
[34]  Lavrov DV, Boore JL, Brown WM (2002) Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol Biol Evol 19: 163–169.
[35]  Fahrein K, Talarico G, Braband A, Podsiadlowski L (2007) The complete mitochondrial genome of Pseudocellus pearsei (Chelicerata: Ricinulei) and a comparison of mitochondrial gene rearrangements in Arachnida. BMC Genomics 8: 386.
[36]  Grande C, Templado J, Zardoya R (2008) Evolution of gastropod mitochondrial genome arrangements. BMC Evol Biol 8: 61.
[37]  Cai XQ, Liu GH, Song HQ, Wu CY, Zou FC, et al. (2012) Sequences and gene organization of the mitochondrial genomes of the liver flukes Opisthorchis viverrini and Clonorchis sinensis (Trematoda). Parasitol Res 110: 235–243.
[38]  Yasuda N, Hamaguchi M, Sasaki M, Nagai S, Saba M, et al. (2006) Complete mitochondrial genome sequences for Crown-of-thorns starfish Acanthaster planci and Acanthaster brevispinus. BMC Genomics 7: 17.
[39]  Catanese G, Manchado M, Infante C (2010) Evolutionary relatedness of mackerels of the genus Scomber based on complete mitochondrial genomes: strong support to the recognition of Atlantic Scomber colias and Pacific Scomber japonicus as distinct species. Gene 452: 35–43.
[40]  Lei R, Shore GD, Brenneman RA, Engberg SE, Sitzmann BD, et al. (2010) Complete sequence and gene organization of the mitochondrial genome for Hubbard's sportive lemur (Lepilemur hubbardorum). Gene 464: 44–49.
[41]  Cunha RL, Grande C, Zardoya R (2009) Neogastropod phylogenetic relationships based on entire mitochondrial genomes. BMC Evol Biol 9: 210.
[42]  Bandyopadhyay PK, Stevenson BJ, Cady MT, Olivera BM, Wolstenholme DR (2006) Complete mitochondrial DNA sequence of a Conoidean gastropod, Lophiotoma (Xenuroturris) cerithiformis: gene order and gastropod phylogeny. Toxicon 48: 29–43.
[43]  Dayrat B, Tillier A, Lecointre G, Tillier S (2001) New clades of euthyneuran gastropods (Mollusca) from 28S rRNA sequences. Mol Phylogenet Evol 19: 225–235.
[44]  Yamazaki N, Ueshima R, Terrett JA, Yokobori S, Kaifu M, et al. (1997) Evolution of pulmonate gastropod mitochondrial genomes: comparisons of gene organizations of Euhadra, Cepaea and Albinaria and implications of unusual tRNA secondary structures. Genetics 145: 749–758.
[45]  Paraense WL (2003) Planorbidae, lymnaeidae and physidae of Peru (Mollusca: Basommatophora). Mem Inst Oswaldo Cruz 98: 767–771.
[46]  Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, et al. (2011) Phylogenomics reveals deep molluscan relationships. Nature 477: 452–456.
[47]  Grande C, Templado J, Cervera JL, Zardoya R (2004) Molecular phylogeny of Euthyneura (Mollusca: Gastropoda). Mol Biol Evol 21: 303–313.
[48]  Klussmann-Kolb A, Dinapoli A, Kuhn K, Streit B, Albrecht C (2008) From sea to land and beyond–new insights into the evolution of euthyneuran Gastropoda (Mollusca). BMC Evol Biol 8: 57.
[49]  White TR, Conrad MM, Tseng R, Balayan S, Golding R, et al. (2011) Ten new complete mitochondrial genomes of pulmonates (Mollusca: Gastropoda) and their impact on phylogenetic relationships. BMC Evol Biol 11: 295.
[50]  Dayrat B, Conrad M, Balayan S, White TR, Albrecht C, et al. (2011) Phylogenetic relationships and evolution of pulmonate gastropods (Mollusca): new insights from increased taxon sampling. Mol Phylogenet Evol 59: 425–437.
[51]  Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18: 691–699.
[52]  Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15: 496–503.
[53]  Liu YY, Wang YX (1965) Morphological and characteristic of Lymnaeidae. Bulletin Biol 3: 8–12 (in Chinese)..
[54]  Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24: 4876–4882.
[55]  Lowe TM, Eddy SR (1997) tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955–964.
[56]  Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
[57]  Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56: 564–577.
[58]  Swofford DL (2002) Paup*: Phylogenetic Analysis Using Parsimony, version 4.0b10. Sinauer Associates, Sunderland, MA.
[59]  Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.
[60]  Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105.
[61]  Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
[62]  Page RD (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357–358.


comments powered by Disqus