[1] | Hossmann KA (2008) Cerebral ischemia: models, methods and outcomes. Neuropharmacology 55: 257–270. S0028–3908(07)00391–7 [pii];10.1016/j.neuropharm.2007.12.004 [doi].
|
[2] | Schneider A, Bottiger BW, Popp E (2009) Cerebral resuscitation after cardiocirculatory arrest. Anesth Analg 108: 971–979. 108/3/971 [pii];10.1213/ane.0b013e318193ca99 [doi].
|
[3] | Harukuni I, Bhardwaj A (2006) Mechanisms of brain injury after global cerebral ischemia. Neurol Clin 24: 1–21. S0733–8619(05)00084–8 [pii];10.1016/j.ncl.2005.10.004 [doi].
|
[4] | Bass E (1985) Cardiopulmonary arrest. Pathophysiology and neurologic complications. Ann Intern Med 103: 920–927.
|
[5] | Richmond TS (1997) Cerebral resuscitation after global brain ischemia: linking research to practice. AACN Clin Issues 8: 171–181.
|
[6] | Nunn J, Hodges H (1994) Cognitive deficits induced by global cerebral ischaemia: relationship to brain damage and reversal by transplants. Behav Brain Res 65: 1–31. 0166–4328(94)90069–8 [pii].
|
[7] | Puttgen HA, Pantle H, Geocadin RG (2009) Management of cardiac arrest patients to maximize neurologic outcome. Curr Opin Crit Care 15: 118–124. 10.1097/MCC.0b013e328326077c [doi];00075198–200904000–00008 [pii].
|
[8] | Zacharia BE, Hickman ZL, Grobelny BT, DeRosa PA, Ducruet AF, et al. (2009) Complement inhibition as a proposed neuroprotective strategy following cardiac arrest. Mediators Inflamm 2009: 124384. 10.1155/2009/124384 [doi].
|
[9] | Popp E, Bottiger BW (2006) Cerebral resuscitation: state of the art, experimental approaches and clinical perspectives. Neurol Clin 24: 73–87, vi. S0733–8619(05)00089–7 [pii];10.1016/j.ncl.2005.10.008 [doi].
|
[10] | Hansen-Schwartz J, Hoel NL, Zhou M, Xu CB, Svendgaard NA, et al. (2003) Subarachnoid hemorrhage enhances endothelin receptor expression and function in rat cerebral arteries. Neurosurgery 52: 1188–1194.
|
[11] | Hansen-Schwartz J, Hoel NL, Xu CB, Svendgaard NA, Edvinsson L (2003) Subarachnoid hemorrhage-induced upregulation of the 5-HT1B receptor in cerebral arteries in rats. J Neurosurg 99: 115–120. [doi].
|
[12] | Henriksson M, Stenman E, Edvinsson L (2003) Intracellular pathways involved in upregulation of vascular endothelin type B receptors in cerebral arteries of the rat. Stroke 34: 1479–1483. 10.1161/01.STR.0000072984.79136.79 [doi];01.STR.0000072984.79136.79 [pii].
|
[13] | Henriksson M, Stenman E, Vikman P, Edvinsson L (2007) MEK1/2 inhibition attenuates vascular ETA and ETB receptor alterations after cerebral ischaemia. Exp Brain Res 178: 470–476. 10.1007/s00221–006–0753–7 [doi].
|
[14] | Henriksson M, Stenman E, Vikman P, Edvinsson L (2007) Protein kinase C inhibition attenuates vascular ETB receptor upregulation and decreases brain damage after cerebral ischemia in rat. BMC Neurosci 8: 7. 1471–2202–8–7 [pii];10.1186/1471–2202–8–7 [doi].
|
[15] | Barone FC, Globus MY, Price WJ, White RF, Storer BL, et al. (1994) Endothelin levels increase in rat focal and global ischemia. J Cereb Blood Flow Metab 14: 337–342.
|
[16] | Nishizawa S, Laher I (2005) Signaling mechanisms in cerebral vasospasm. Trends Cardiovasc Med 15: 24–34. S1050–1738(04)00183–5 [pii];10.1016/j.tcm.2004.12.002 [doi].
|
[17] | Smith ML, Bendek G, Dahlgren N, Rosen I, Wieloch T, et al. (1984) Models for studying long-term recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model. Acta Neurol Scand 69: 385–401.
|
[18] | McBean DE, Kelly PA (1998) Rodent models of global cerebral ischemia: a comparison of two-vessel occlusion and four-vessel occlusion. Gen Pharmacol 30: 431–434. S030636239700284X [pii].
|
[19] | Paljarvi L (1984) Brain lactic acidosis and ischemic cell damage: a topographic study with high-resolution light microscopy of early recovery in a rat model of severe incomplete ischemia. Acta Neuropathol 64: 89–98.
|
[20] | Eklof B, Siesjo BK (1972) The effect of bilateral carotid artery ligation upon the blood flow and the energy state of the rat brain. Acta Physiol Scand 86: 155–165.
|
[21] | Smith ML, Kalimo H, Warner DS, Siesjo BK (1988) Morphological lesions in the brain preceding the development of postischemic seizures. Acta Neuropathol 76: 253–264.
|
[22] | Larsen CC, Povlsen GK, Rasmussen MN, Edvinsson L (2010) Improvement in neurological outcome and abolition of cerebrovascular endothelin B and 5-hydroxytryptamine 1B receptor upregulation through mitogen-activated protein kinase kinase 1/2 inhibition after subarachnoid hemorrhage in rats. J Neurosurg. 10.3171/2010.6.JNS1018 [doi].
|
[23] | Meyer OA, Tilson HA, Byrd WC, Riley MT (1979) A method for the routine assessment of fore- and hindlimb grip strength of rats and mice. Neurobehav Toxicol 1: 233–236.
|
[24] | Hoel NL, Hansen-Schwartz J, Edvinsson L (2001) Selective up-regulation of 5-HT(1B/1D) receptors during organ culture of cerebral arteries. Neuroreport 12: 1605–1608.
|
[25] | Smith ML, Auer RN, Siesjo BK (1984) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol 64: 319–332.
|
[26] | Bendel O, Alkass K, Bueters T, von Euler M, von Euler G (2005) Reproducible loss of CA1 neurons following carotid artery occlusion combined with halothane-induced hypotension. Brain Res 1033: 135–142. S0006–8993(04)01835–9 [pii];10.1016/j.brainres.2004.11.033 [doi].
|
[27] | Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH (1999) Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 19: RC39.
|
[28] | Kagstrom E, Smith ML, Siesjo BK (1983) Recirculation in the rat brain following incomplete ischemia. J Cereb Blood Flow Metab 3: 183–192.
|
[29] | Grogaard B, Gerdin B, Arfors KE (1988) Inability of flunarizine, lidoflazine or magnesium to counteract delayed hypoperfusion after forebrain ischaemia in the rat. Acta Neurochir (Wien ) 95: 136–142.
|
[30] | Stenman E, Malmsjo M, Uddman E, Gido G, Wieloch T, et al. (2002) Cerebral ischemia upregulates vascular endothelin ET(B) receptors in rat. Stroke 33: 2311–2316.
|
[31] | Ansar S, Vikman P, Nielsen M, Edvinsson L (2007) Cerebrovascular ETB, 5-HT1B, and AT1 receptor upregulation correlates with reduction in regional CBF after subarachnoid hemorrhage. Am J Physiol Heart Circ Physiol 293: H3750–H3758. 00857.2007 [pii];10.1152/ajpheart.00857.2007 [doi].
|
[32] | Rasmussen MNP, Hornbak M, Edvinsson L (2009) Enhanced contractile response of vascular contractile receptors following distal focal permanent occlusion. J Cereb Blood Flow Metab 29: 166–178.
|
[33] | O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, et al. (2006) 1,026 experimental treatments in acute stroke. Ann Neurol 59: 467–477. 10.1002/ana.20741 [doi].
|
[34] | Beg SA, Hansen-Schwartz JA, Vikman PJ, Xu CB, Edvinsson LI (2006) ERK1/2 inhibition attenuates cerebral blood flow reduction and abolishes ET(B) and 5-HT(1B) receptor upregulation after subarachnoid hemorrhage in rat. J Cereb Blood Flow Metab 26: 846–856. 9600236 [pii];10.1038/sj.jcbfm.9600236 [doi].
|
[35] | Kaundal RK, Deshpande TA, Gulati A, Sharma SS (2012) Targeting endothelin receptors for pharmacotherapy of ischemic stroke: current scenario and future perspectives. Drug Discov Today. S1359–6446(12)00079–7 [pii];10.1016/j.drudis.2012.02.017 [doi].
|
[36] | Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, et al. (2012) Randomized Trial of Clazosentan in Patients With Aneurysmal Subarachnoid Hemorrhage Undergoing Endovascular Coiling. Stroke. STROKEAHA.111.648980 [pii];10.1161/STROKEAHA.111.648980 [doi].
|