全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

Biological Convergence of Cancer Signatures

DOI: 10.1371/journal.pone.0004544

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gene expression profiling has identified cancer prognostic and predictive signatures with superior performance to conventional histopathological or clinical parameters. Consequently, signatures are being incorporated into clinical practice and will soon influence everyday decisions in oncology. However, the slight overlap in the gene identity between signatures for the same cancer type or condition raises questions about their biological and clinical implications. To clarify these issues, better understanding of the molecular properties and possible interactions underlying apparently dissimilar signatures is needed. Here, we evaluated whether the signatures of 24 independent studies are related at the genome, transcriptome or proteome levels. Significant associations were consistently observed across these molecular layers, which suggest the existence of a common cancer cell phenotype. Convergence on cell proliferation and death supports the pivotal involvement of these processes in prognosis, metastasis and treatment response. In addition, functional and molecular associations were identified with the immune response in different cancer types and conditions that complement the contribution of cell proliferation and death. Examination of additional, independent, cancer datasets corroborated our observations. This study proposes a comprehensive strategy for interpreting cancer signatures that reveals common design principles and systems-level properties.

References

[1]  Nuyten DS, van de Vijver MJ (2008) Using microarray analysis as a prognostic and predictive tool in oncology: focus on breast cancer and normal tissue toxicity. Semin Radiat Oncol 18: 105–114.
[2]  Morris SR, Carey LA (2007) Gene expression profiling in breast cancer. Curr Opin Oncol 19: 547–551.
[3]  Michiels S, Koscielny S, Hill C (2007) Interpretation of microarray data in cancer. Br J Cancer 96: 1155–1158.
[4]  Eden P, Ritz C, Rose C, Ferno M, Peterson C (2004) “Good Old” clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers. Eur J Cancer 40: 1837–1841.
[5]  Lin YH, Friederichs J, Black MA, Mages J, Rosenberg R, et al. (2007) Multiple gene expression classifiers from different array platforms predict poor prognosis of colorectal cancer. Clin Cancer Res 13: 498–507.
[6]  Sherlock G (2005) Of fish and chips. Nat Methods 2: 329–330.
[7]  Son CG, Bilke S, Davis S, Greer BT, Wei JS, et al. (2005) Database of mRNA gene expression profiles of multiple human organs. Genome Res 15: 443–450.
[8]  Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci U S A 103: 5923–5928.
[9]  Roepman P, Kemmeren P, Wessels LF, Slootweg PJ, Holstege FC (2006) Multiple robust signatures for detecting lymph node metastasis in head and neck cancer. Cancer Res 66: 2361–2366.
[10]  Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS, et al. (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355: 560–569.
[11]  Massague J (2007) Sorting out breast-cancer gene signatures. N Engl J Med 356: 294–297.
[12]  van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.
[13]  Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, et al. (2000) Molecular portraits of human breast tumours. Nature 406: 747–752.
[14]  Chang JT, Nevins JR (2006) GATHER: a systems approach to interpreting genomic signatures. Bioinformatics 22: 2926–2933.
[15]  Wennmalm K, Miller LD, Bergh J (2007) A gene signature in breast cancer. N Engl J Med 356: 1887–1888; author reply 1887–1888.
[16]  Yu JX, Sieuwerts AM, Zhang Y, Martens JW, Smid M, et al. (2007) Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer. BMC Cancer 7: 182.
[17]  Shen R, Ghosh D, Chinnaiyan AM (2004) Prognostic meta-signature of breast cancer developed by two-stage mixture modeling of microarray data. BMC Genomics 5: 94.
[18]  Zhang Z, Chen D, Fenstermacher DA (2007) Integrated analysis of independent gene expression microarray datasets improves the predictability of breast cancer outcome. BMC Genomics 8: 331.
[19]  Vuaroqueaux V, Urban P, Labuhn M, Delorenzi M, Wirapati P, et al. (2007) Low E2F1 transcript levels are a strong determinant of favorable breast cancer outcome. Breast Cancer Res 9: R33.
[20]  Hernandez P, Sole X, Valls J, Moreno V, Capella G, et al. (2007) Integrative analysis of a cancer somatic mutome. Mol Cancer 6: 13.
[21]  Shen R, Chinnaiyan AM, Ghosh D (2008) Pathway analysis reveals functional convergence of gene expression profiles in breast cancer. BMC Med Genomics 1: 28.
[22]  Teschendorff AE, Miremadi A, Pinder SE, Ellis IO, Caldas C (2007) An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol 8: R157.
[23]  Balciunaite E, Spektor A, Lents NH, Cam H, Te Riele H, et al. (2005) Pocket protein complexes are recruited to distinct targets in quiescent and proliferating cells. Mol Cell Biol 25: 8166–8178.
[24]  Jin VX, Rabinovich A, Squazzo SL, Green R, Farnham PJ (2006) A computational genomics approach to identify cis-regulatory modules from chromatin immunoprecipitation microarray data–a case study using E2F1. Genome Res 16: 1585–1595.
[25]  Hallstrom TC, Mori S, Nevins JR (2008) An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell 13: 11–22.
[26]  Du W, Pogoriler J (2006) Retinoblastoma family genes. Oncogene 25: 5190–5200.
[27]  Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Barrette TR, Ghosh D, et al. (2005) Mining for regulatory programs in the cancer transcriptome. Nat Genet 37: 579–583.
[28]  Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, et al. (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13: 1977–2000.
[29]  Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, et al. (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38: 1289–1297.
[30]  Butt AJ, Sutherland RL, Musgrove EA (2007) Live or let die: oestrogen regulation of survival signalling in endocrine response. Breast Cancer Res 9: 306.
[31]  Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, et al. (2005) Genes that mediate breast cancer metastasis to lung. Nature 436: 518–524.
[32]  Krones-Herzig A, Mittal S, Yule K, Liang H, English C, et al. (2005) Early growth response 1 acts as a tumor suppressor in vivo and in vitro via regulation of p53. Cancer Res 65: 5133–5143.
[33]  Fahmy RG, Dass CR, Sun LQ, Chesterman CN, Khachigian LM (2003) Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med 9: 1026–1032.
[34]  Ishikawa H, Shozu M, Okada M, Inukai M, Zhang B, et al. (2007) Early growth response gene-1 plays a pivotal role in down-regulation of a cohort of genes in uterine leiomyoma. J Mol Endocrinol 39: 333–341.
[35]  Adler AS, Lin M, Horlings H, Nuyten DS, van de Vijver MJ, et al. (2006) Genetic regulators of large-scale transcriptional signatures in cancer. Nat Genet 38: 421–430.
[36]  Pliskova M, Vondracek J, Vojtesek B, Kozubik A, Machala M (2005) Deregulation of cell proliferation by polycyclic aromatic hydrocarbons in human breast carcinoma MCF-7 cells reflects both genotoxic and nongenotoxic events. Toxicol Sci 83: 246–256.
[37]  Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, et al. (2005) Patterns of resistance and incomplete response to docetaxel by gene expression profiling in breast cancer patients. J Clin Oncol 23: 1169–1177.
[38]  Greig KT, Carotta S, Nutt SL (2008) Critical roles for c-Myb in hematopoietic progenitor cells. Semin Immunol.
[39]  Ambs S, Marincola FM, Thurin M (2008) Profiling of immune response to guide cancer diagnosis, prognosis, and prediction of therapy. Cancer Res 68: 4031–4033.
[40]  Chang HY, Nuyten DS, Sneddon JB, Hastie T, Tibshirani R, et al. (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci U S A 102: 3738–3743.
[41]  Hernandez P, Huerta-Cepas J, Montaner D, Al-Shahrour F, Valls J, et al. (2007) Evidence for systems-level molecular mechanisms of tumorigenesis. BMC Genomics 8: 185.
[42]  Ge H, Liu Z, Church GM, Vidal M (2001) Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet 29: 482–486.
[43]  Grigoriev A (2001) A relationship between gene expression and protein interactions on the proteome scale: analysis of the bacteriophage T7 and the yeast Saccharomyces cerevisiae. Nucleic Acids Res 29: 3513–3519.
[44]  Jansen R, Greenbaum D, Gerstein M (2002) Relating whole-genome expression data with protein-protein interactions. Genome Res 12: 37–46.
[45]  Kemmeren P, van Berkum NL, Vilo J, Bijma T, Donders R, et al. (2002) Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol Cell 9: 1133–1143.
[46]  Landemaine T, Jackson A, Bellahcene A, Rucci N, Sin S, et al. (2008) A Six-Gene Signature Predicting Breast Cancer Lung Metastasis. Cancer Res 68: 6092–6099.
[47]  Khambata-Ford S, Garrett CR, Meropol NJ, Basik M, Harbison CT, et al. (2007) Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol 25: 3230–3237.
[48]  Janne PA, Engelman JA, Johnson BE (2005) Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumor biology. J Clin Oncol 23: 3227–3234.
[49]  Tsuchihashi Z, Khambata-Ford S, Hanna N, Janne PA (2005) Responsiveness to cetuximab without mutations in EGFR. N Engl J Med 353: 208–209.
[50]  Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, et al. (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2: E7.
[51]  Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70.
[52]  Paik S, Shak S, Tang G, Kim C, Baker J, et al. (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351: 2817–2826.
[53]  Hu Z, Fan C, Oh DS, Marron JS, He X, et al. (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7: 96.
[54]  Wang XD, Reeves K, Luo FR, Xu LA, Lee F, et al. (2007) Identification of candidate predictive and surrogate molecular markers for dasatinib in prostate cancer: rationale for patient selection and efficacy monitoring. Genome Biol 8: R255.
[55]  Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, et al. (2005) BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21: 3439–3440.
[56]  Blanco E, Messeguer X, Smith TF, Guigo R (2006) Transcription factor map alignment of promoter regions. PLoS Comput Biol 2: e49.
[57]  Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, et al. (2007) JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res 36: D102–106.
[58]  Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, et al. (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31: 374–378.
[59]  Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Statistical Methodology 57: 289–300.
[60]  Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP (2007) GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics 23: 3251–3253.
[61]  Khatri P, Voichita C, Kattan K, Ansari N, Khatri A, et al. (2007) Onto-Tools: new additions and improvements in 2006. Nucleic Acids Res 35: W206–211.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133