All Title Author
Keywords Abstract

PLOS ONE  2009 

cGMP-Dependent Protein Kinase I Is Crucial for Angiogenesis and Postnatal Vasculogenesis

DOI: 10.1371/journal.pone.0004879

Full-Text   Cite this paper   Add to My Lib


Background Endothelium-derived nitric oxide plays an important role for the bone marrow microenvironment. Since several important effects of nitric oxide are mediated by cGMP-dependent pathways, we investigated the role of the cGMP downstream effector cGMP-dependent protein kinase I (cGKI) on postnatal neovascularization. Methodology/Principal Findings In a disc neovascularization model, cGKI?/? mice showed an impaired neovascularization as compared to their wild-type (WT) littermates. Infusion of WT, but not cGKI?/? bone marrow progenitors rescued the impaired ingrowth of new vessels in cGKI-deficient mice. Bone marrow progenitors from cGKI?/? mice showed reduced proliferation and survival rates. In addition, we used cGKIα leucine zipper mutant (LZM) mice as model for cGKI deficiency. LZM mice harbor a mutation in the cGKIα leucine zipper that prevents interaction with downstream signaling molecules. Consistently, LZM mice exhibited reduced numbers of vasculogenic progenitors and impaired neovascularization following hindlimb ischemia compared to WT mice. Conclusions/Significance Our findings demonstrate that the cGMP-cGKI pathway is critical for postnatal neovascularization and establish a new role for cGKI in vasculogenesis, which is mediated by bone marrow-derived progenitors.


[1]  Murohara T, Asahara T, Silver M, Bauters C, Masuda H, et al. (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101: 2567–2578.
[2]  Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, et al. (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9: 1370–1376.
[3]  Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1: 27–31.
[4]  Risau W (1997) Mechanisms of angiogenesis. Nature 386: 671–674.
[5]  Takahashi T, Kalka C, Masuda H, Chen D, Silver M, et al. (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5: 434–438.
[6]  Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, et al. (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92: 362–367.
[7]  Iwakura A, Luedemann C, Shastry S, Hanley A, Kearney M, et al. (2003) Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation 108: 3115–3121.
[8]  Laufs U, Werner N, Link A, Endres M, Wassmann S, et al. (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109: 220–226.
[9]  Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, et al. (2004) Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110: 1933–1939.
[10]  Santhanam AV, d'Uscio LV, Peterson TE, Katusic ZS (2008) Activation of endothelial nitric oxide synthase is critical for erythropoietin-induced mobilization of progenitor cells. Peptides 29: 1451–1455.
[11]  Hornig B, Arakawa N, Kohler C, Drexler H (1998) Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation 97: 363–368.
[12]  Thum T, Fraccarollo D, Schultheiss M, Froese S, Galuppo P, et al. (2007) Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes 56: 666–674.
[13]  Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, et al. (2007) Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest 117: 1249–1259.
[14]  Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, et al. (2004) Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109: 1615–1622.
[15]  Sasaki K, Heeschen C, Aicher A, Ziebart T, Honold J, et al. (2006) Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc Natl Acad Sci U S A 103: 14537–14541.
[16]  Segal MS, Shah R, Afzal A, Perrault CM, Chang K, et al. (2006) Nitric oxide cytoskeletal-induced alterations reverse the endothelial progenitor cell migratory defect associated with diabetes. Diabetes 55: 102–109.
[17]  Vaandrager AB, de Jonge HR (1996) Signalling by cGMP-dependent protein kinases. Mol Cell Biochem 157: 23–30.
[18]  Feil R, Lohmann SM, de Jonge H, Walter U, Hofmann F (2003) Cyclic GMP-dependent protein kinases and the cardiovascular system: insights from genetically modified mice. Circ Res 93: 907–916.
[19]  Hofmann F, Feil R, Kleppisch T, Schlossmann J (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86: 1–23.
[20]  Draijer R, Vaandrager AB, Nolte C, de Jonge HR, Walter U, et al. (1995) Expression of cGMP-dependent protein kinase I and phosphorylation of its substrate, vasodilator-stimulated phosphoprotein, in human endothelial cells of different origin. Circ Res 77: 897–905.
[21]  Michael SK, Surks HK, Wang Y, Zhu Y, Blanton R, et al. (2008) High blood pressure arising from a defect in vascular function. Proc Natl Acad Sci U S A 105: 6702–6707.
[22]  Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, et al. (1998) Defective smooth muscle regulation in cGMP kinase I-deficient mice. Embo J 17: 3045–3051.
[23]  Massberg S, Sausbier M, Klatt P, Bauer M, Pfeifer A, et al. (1999) Increased adhesion and aggregation of platelets lacking cyclic guanosine 3′,5′-monophosphate kinase I. J Exp Med 189: 1255–1264.
[24]  Li Z, Xi X, Gu M, Feil R, Ye RD, et al. (2003) A Stimulatory Role for cGMP-Dependent Protein Kinase in Platelet Activation. Cell 112: 77–86.
[25]  Foller M, Feil S, Ghoreschi K, Koka S, Gerling A, et al. (2008) Anemia and splenomegaly in cGKI-deficient mice. Proc Natl Acad Sci U S A 105: 6771–6776.
[26]  Zhang R, Wang L, Zhang L, Chen J, Zhu Z, et al. (2003) Nitric Oxide Enhances Angiogenesis via the Synthesis of Vascular Endothelial Growth Factor and cGMP After Stroke in the Rat. Circ Res 92: 308–313.
[27]  Pyriochou A, Zhou Z, Koika V, Petrou C, Cordopatis P, et al. (2007) The phosphodiesterase 5 inhibitor sildenafil stimulates angiogenesis through a protein kinase G/MAPK pathway. J Cell Physiol 211: 197–204.
[28]  Senthilkumar A, Smith RD, Khitha J, Arora N, Veerareddy S, et al. (2007) Sildenafil promotes ischemia-induced angiogenesis through a PKG-dependent pathway. Arterioscler Thromb Vasc Biol 27: 1947–1954.
[29]  Yamahara K, Itoh H, Chun TH, Ogawa Y, Yamashita J, et al. (2003) Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration. Proc Natl Acad Sci U S A 100: 3404–3409.
[30]  Oshita AK, Rothstein G, Lonngi G (1977) cGMP stimulation of stem cell proliferation. Blood 49: 585–591.
[31]  Chan SL, Fiscus RR (2003) Guanylyl cyclase inhibitors NS2028 and ODQ and protein kinase G (PKG) inhibitor KT5823 trigger apoptotic DNA fragmentation in immortalized uterine epithelial cells: anti-apoptotic effects of basal cGMP/PKG. Mol Hum Reprod 9: 775–783.
[32]  Wolfsgruber W, Feil S, Brummer S, Kuppinger O, Hofmann F, et al. (2003) A proatherogenic role for cGMP-dependent protein kinase in vascular smooth muscle cells. Proc Natl Acad Sci U S A 100: 13519–13524.
[33]  Feil R, Feil S, Hofmann F (2005) A heretical view on the role of NO and cGMP in vascular proliferative diseases. Trends Mol Med 11: 71–75.
[34]  Fiedler B, Feil R, Hofmann F, Willenbockel C, Drexler H, et al. (2006) cGMP-dependent protein kinase type I inhibits TAB1-p38 mitogen-activated protein kinase apoptosis signaling in cardiac myocytes. J Biol Chem 281: 32831–32840.
[35]  Surks HK, Mochizuki N, Kasai Y, Georgescu SP, Tang KM, et al. (1999) Regulation of myosin phosphatase by a specific interaction with cGMP- dependent protein kinase Ialpha. Science 286: 1583–1587.
[36]  Diller GP, van Eijl S, Okonko DO, Howard LS, Ali O, et al. (2008) Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Circulation 117: 3020–3030.
[37]  Wegener JW, Nawrath H, Wolfsgruber W, Kuhbandner S, Werner C, et al. (2002) cGMP-dependent protein kinase I mediates the negative inotropic effect of cGMP in the murine myocardium. Circ Res 90: 18–20.
[38]  Walter DH, Rochwalsky U, Reinhold J, Seeger F, Aicher A, et al. (2007) Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler Thromb Vasc Biol 27: 275–282.
[39]  Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, et al. (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104: 2752–2760.
[40]  Feil S, Zimmermann P, Knorn A, Brummer S, Schlossmann J, et al. (2005) Distribution of cGMP-dependent protein kinase type I and its isoforms in the mouse brain and retina. Neuroscience 135: 863–868.
[41]  Fajardo LF, Kowalski J, Kwan HH, Prionas SD, Allison AC (1988) The disc angiogenesis system. Lab Invest 58: 718–724.
[42]  Heeschen C, Jang JJ, Weis M, Pathak A, Kaji S, et al. (2001) Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med 7: 833–839.
[43]  Springer ML, Ip TK, Blau HM (2000) Angiogenesis monitored by perfusion with a space-filling microbead suspension. Mol Ther 1: 82–87.


comments powered by Disqus

Contact Us


微信:OALib Journal