All Title Author
Keywords Abstract

PLOS ONE  2012 

Fluorescence Correlation Spectroscopy Measurements of the Membrane Protein TetA in Escherichia coli Suggest Rapid Diffusion at Short Length Scales

DOI: 10.1371/journal.pone.0048600

Full-Text   Cite this paper   Add to My Lib


Structural inhomogeneities in biomembranes can lead to complex diffusive behavior of membrane proteins that depend on the length or time scales that are probed. This effect is well studied in eukaryotic cells, but has been explored only recently in bacteria. Here we used fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) to study diffusion of the membrane protein TetA-YFP in E. coli. We find that the diffusion constant determined from FRAP is comparable to other reports of inner membrane protein diffusion constants in E. coli. However, FCS, which probes diffusion on shorter length scales, gives a value that is almost two orders of magnitude higher and is comparable to lipid diffusion constants. These results suggest there is a population of TetA-YFP molecules in the membrane that move rapidly over short length scales (~ 400 nm) but move significantly more slowly over the longer length scales probed by FRAP.


[1]  Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720–731.
[2]  Ritchie K, Spector J (2007) Single molecule studies of molecular diffusion in cellular membranes: determining membrane structure. Biopolymers 87: 95–101.
[3]  Ramadurai S, Holt A, Krasnikov V, van den Bogaart G, Killian JA, et al. (2009) Lateral diffusion of membrane proteins. Journal of the American Chemical Society 131: 12650–12656.
[4]  Adkins EM, Samuvel DJ, Fog JU, Eriksen J, Jayanthi LD, et al. (2007) Membrane mobility and microdomain association of the dopamine transporter studied with fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. Biochemistry 46: 10484–10497.
[5]  Edidin M (2001) Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends in cell biology 11: 492–496.
[6]  Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nature reviews Molecular cell biology 1: 31–39.
[7]  Sergé A, Fourgeaud L, Hémar A, Choquet D (2002) Receptor activation and homer differentially control the lateral mobility of metabotropic glutamate receptor 5 in the neuronal membrane. The Journal of neuroscience: the official journal of the Society for Neuroscience 22: 3910–3920.
[8]  Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. The Journal of Cell Biology 157: 1071–1081.
[9]  van den Wildenberg SMJL, Bollen YJM, Peterman EJG (2011) How to quantify protein diffusion in the bacterial membrane. Biopolymers 95: 312–321.
[10]  Chiantia S, Ries J, Schwille P (2009) Fluorescence correlation spectroscopy in membrane structure elucidation. Biochimica et biophysica acta 1788: 225–233.
[11]  Deich J, Judd EM, McAdams HH, Moerner WE (2004) Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. Proceedings of the National Academy of Sciences of the United States of America 101: 15921–15926.
[12]  Mullineaux CW, Nenninger A, Ray N, Robinson C (2006) Diffusion of green fluorescent protein in three cell environments in Escherichia coli. Journal of bacteriology 188: 3442–3448.
[13]  Kumar M, Mommer MS, Sourjik V (2010) Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli. Biophysical journal 98: 552–559.
[14]  Schindler M, Osborn MJ, Koppel DE (1980) Lateral diffusion of lipopolysaccharide in the outer membrane of Salmonella typhimurium. Nature 285: 261–263.
[15]  Spector J, Zakharov S, Lill Y, Sharma O, Cramer WA, et al. (2010) Mobility of BtuB and OmpF in the Escherichia coli outer membrane: implications for dynamic formation of a translocon complex. Biophysical journal 99: 3880–3886.
[16]  Oddershede L, Dreyer JK, Grego S, Brown S, Berg-Sorensen K (2002) The motion of a single molecule, the lambda-receptor, in the bacterial outer membrane. Biophysical journal 83: 3152–3161.
[17]  Gibbs KA, Isaac DD, Xu J, Hendrix RW, Silhavy TJ, et al. (2004) Complex spatial distribution and dynamics of an abundant Escherichia coli outer membrane protein, LamB. Molecular microbiology 53: 1771–1783.
[18]  Gennis RB (1989) Biomembranes: Molecular Structure and Function; Cantor CR, editor. New York, NY: Springer-Verlag.
[19]  Rudner DZ, Pan Q, Losick RM (2002) Evidence that subcellular localization of a bacterial membrane protein is achieved by diffusion and capture. Proceedings of the National Academy of Sciences of the United States of America 99: 8701–8706.
[20]  Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36: 176–182.
[21]  García-Sáez AJ, Schwille P (2008) Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions. Methods (San Diego, Calif) 46: 116–122.
[22]  Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Reports on Progress in Physics 65: 251–297.
[23]  Smith-Dupont KB, Guo L, Gai F (2010) Diffusion as a probe of the heterogeneity of antimicrobial peptide-membrane interactions. Biochemistry 49: 4672–4678.
[24]  Guo L, Chowdhury P, Fang J, Gai F (2007) Heterogeneous and anomalous diffusion inside lipid tubules. The journal of physical chemistry B 111: 14244–14249.
[25]  Chowdhury P, Wang W, Lavender S, Bunagan MR, Klemke JW, et al. (2007) Fluorescence correlation spectroscopic study of serpin depolymerization by computationally designed peptides. Journal of molecular biology 369: 462–473.
[26]  Chen Y, Lagerholm BC, Yang B, Jacobson K (2006) Methods to measure the lateral diffusion of membrane lipids and proteins. Methods (San Diego, Calif) 39: 147–153.
[27]  Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13: 1–27.
[28]  Ababneh ZQ, Beloeil H, Berde CB, Ababneh AM, Maier SE, et al. (2009) In vivo lipid diffusion coefficient measurements in rat bone marrow. Magnetic resonance imaging 27: 859–864.
[29]  Gaede HC, Gawrisch K (2003) Lateral diffusion rates of lipid, water, and a hydrophobic drug in a multilamellar liposome. Biophysical Journal 85: 1734–1740.
[30]  Tocanne JF, Dupou-Cezanne L, Lopez A (1994) Lateral diffusion of lipids in model and natural membranes. Progress in lipid research 33: 203–237.
[31]  Scandella CJ, Devaux P, McConnell HM (1972) Rapid lateral diffusion of phospholipids in rabbit sarcoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America 69: 2056–2060.
[32]  Ramadurai S, Duurkens R, Krasnikov VV, Poolman B (2010) Lateral diffusion of membrane proteins: consequences of hydrophobic mismatch and lipid composition. Biophysical journal 99: 1482–1489.
[33]  Kim KK, Yokota H, Kim SH (1999) Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400: 787–792.
[34]  Ames P, Studdert CA, Reiser RH, Parkinson JS (2002) Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 99: 7060–7065.
[35]  Meacci G, Ries J, Fischer-Friedrich E, Kahya N, Schwille P, et al. (2006) Mobility of Min-proteins in Escherichia coli measured by fluorescence correlation spectroscopy. Physical biology 3: 255–263.
[36]  Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287: 1652–1655.
[37]  Elowitz MB, Surette MG, Wolf PE, Stock JB, Leibler S (1999) Protein mobility in the cytoplasm of Escherichia coli. Journal of bacteriology 181: 197–203.
[38]  Mika JT, Krasnikov V, van den Bogaart G, de Haan F, Poolman B (2011) Evaluation of pulsed-FRAP and conventional-FRAP for determination of protein mobility in prokaryotic cells. PloS one 6: e25664.
[39]  Etienne E, Lenne PF, Sturgis JN, Rigneault H (2006) Confined diffusion in tubular structures analyzed by fluorescence correlation spectroscopy on a mirror. Applied optics 45: 4497–4507.
[40]  Bohnert Jra, Karamian B, Nikaido H (2010) Optimized Nile Red efflux assay of AcrAB-TolC multidrug efflux system shows competition between substrates. Antimicrobial agents and chemotherapy 54: 3770–3775.
[41]  Day Ca, Kenworthy AK (2009) Tracking microdomain dynamics in cell membranes. Biochimica et biophysica acta 1788: 245–253.
[42]  Lenne P-Fo, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, et al. (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. The EMBO journal 25: 3245–3256.
[43]  Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Plainview, N.Y.: Cold Spring Harbor Laboratory Press.
[44]  Batchelor E, Silhavy TJ, Goulian M (2004) Continuous control in bacterial regulatory circuits. Journal of bacteriology 186: 7618–7625.
[45]  Haldimann A, Wanner BL (2001) Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. Journal of bacteriology 183: 6384–6393.
[46]  Datsenko Ka, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America 97: 6640–6645.
[47]  Batchelor E, Goulian M (2006) Imaging OmpR localization in Escherichia coli. Molecular microbiology 59: 1767–1778.
[48]  Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular systems biology 2: 2006.0008–2006.0008.
[49]  Casadaban MJ (1976) Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. Journal of molecular biology 104: 541–555.
[50]  Ferenci T, Zhou Z, Betteridge T, Ren Y, Liu Y, et al. (2009) Genomic sequencing reveals regulatory mutations and recombinational events in the widely used MC4100 lineage of Escherichia coli K-12. Journal of bacteriology 191: 4025–4029.
[51]  Rogers JM, Polishchuk AL, Guo L, Wang J, DeGrado WF, et al. (2011) Photoinduced electron transfer and fluorophore motion as a probe of the conformational dynamics of membrane proteins: application to the influenza a M2 proton channel. Langmuir: the ACS journal of surfaces and colloids 27: 3815–3821.
[52]  Schwille P, Kummer S, Heikal AA, Moerner WE, Webb WW (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America 97: 151–156.
[53]  Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proceedings of the National Academy of Sciences of the United States of America 95: 13573–13578.
[54]  Wang E, Ballister ER, Lampson MA (2011) Aurora B dynamics at centromeres create a diffusion-based phosphorylation gradient. The Journal of cell biology 194: 539–549.


comments powered by Disqus