All Title Author
Keywords Abstract

PLOS ONE  2009 

Single-Cell Profiling Reveals the Origin of Phenotypic Variability in Adipogenesis

DOI: 10.1371/journal.pone.0005189

Full-Text   Cite this paper   Add to My Lib

Abstract:

Phenotypic heterogeneity in a clonal cell population is a well-observed but poorly understood phenomenon. Here, a single-cell approach is employed to investigate non-mutative causes of phenotypic heterogeneity during the differentiation of 3T3-L1 cells into fat cells. Using coherent anti-Stokes Raman scattering microscopy and flow cytometry, adipogenic gene expression, insulin signaling, and glucose import are visualized simultaneously with lipid droplet accumulation in single cells. Expression of adipogenic genes PPARγ, C/EBPα, aP2, LP2 suggests a commitment to fat cell differentiation in all cells. However, the lack of lipid droplet in many differentiating cells suggests adipogenic gene expression is insufficient for lipid droplet formation. Instead, cell-to-cell variability in lipid droplet formation is dependent on the cascade responses of an insulin signaling pathway which includes insulin sensitivity, kinase activity, glucose import, expression of an insulin degradation enzyme, and insulin degradation rate. Increased and prolonged insulin stimulation promotes lipid droplet accumulation in all differentiating cells. Single-cell profiling reveals the kinetics of an insulin signaling cascade as the origin of phenotypic variability in drug-inducible adipogenesis.

References

[1]  Nan XL, Cheng JX, Xie XS (2003) Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J Lipid Res 44: 2202–2208.
[2]  Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444: 847–853.
[3]  Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7: 885–896.
[4]  Lee YH, Chen SY, Wiesner RJ, Huang YF (2004) Simple flow cytometric method used to assess lipid accumulation in fat cells. J Lipid Res 45: 1162–1167.
[5]  Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287: 1652–1655.
[6]  Wilkinson GR (2005) Drug therapy - Drug metabolism and variability among patients in drug response. New England J Med 352: 2211–2221.
[7]  Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4: 577–587.
[8]  Le TT, Harlepp S, Guet CC, Dittmar K, Emonet T, et al. (2005) Real-time RNA profiling within a single bacterium. Proc Natl Acad Sci USA 102: 9160–9164.
[9]  Korobkova E, Emonet T, Vilar JMG, Shimizu TS, Cluzel P (2004) From molecular noise to behavioural variability in a single bacterium. Nature 428: 574–578.
[10]  Choi PJ, Cai L, Frieda K, Xie S (2008) A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322: 442–446.
[11]  Gordon A, Colman-Lerner A, Chin TE, Benjamin KR, Yu RC, et al. (2007) Single-cell quantification of molecules and rates using open-source microscope-based cytometry. Nat Methods 4: 175–181.
[12]  Perfetto SP, Chattopadhyay PK, Roederer M (2004) Innovation - Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4: 648–655.
[13]  Evans CL, Xie XS (2008) Coherent anti-Stokes Raman scattering microscopy: chemically selective imaging for biology and medicine. Annu Rev Anal Chem 1: 883–909.
[14]  Cheng JX, Xie XS (2004) Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications. J Phys Chem B 108: 827–840.
[15]  Le TT, Langohr IM, Locker MJ, Sturek M, Cheng JX (2007) Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J Biomed Opt 12: 054007.
[16]  Potma EO, Xie XS (2005) Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-stokes Raman scattering microscopy. Chem Phys Chem 6: 77–79.
[17]  Wang HF, Fu Y, Zickmund P, Shi RY, Cheng JX (2005) Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophysical Journal 89: 581–591.
[18]  Le TT, Huff TB, Cheng JX (2009) Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis. BMC Cancer 9: 42.
[19]  Yamaguchi T, Omatsu N, Morimoto E, Nakashima H, Ueno K, et al. (2007) CGI-58 facilitates lipolysis on lipid droplets but is not involved in the vesiculation of lipid droplets caused by hormonal stimulation. J Lipid Res 48: 1078–1089.
[20]  Nan XL, Potma EO, Xie XS (2006) Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-stokes Raman scattering microscopy. Biophys J 91: 728–735.
[21]  Hellerer T, Axang C, Brackmann C, Hillertz P, Pilon M, et al. (2007) Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. Proc Natl Acad Sci USA 104: 14658–14663.
[22]  Wang HW, Bao N, Le TT, Lu C, Cheng JX (2008) Microfluidic CARS cytometry. Opt Express 16: 5782–5789.
[23]  Le TT, Rehrer CW, Huff TB, Nichols MB, Camarillo IG, et al. (2007) Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma. Mol Imaging 6: 205–211.
[24]  Green H, Kehinde O (1974) Sublines of mouse 3T3 cells that accumulate lipid. Cell 1: 113–116.
[25]  Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414: 799–806.
[26]  Smas CM, Sul HS (1993) Pref-1, a protein containing Egf-like repeats, inhibits adipocyte differentiation. Cell 73: 725–734.
[27]  Tong Q, Dalgin G, Xu HY, Ting CN, Leiden JM, et al. (2000) Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290: 134–138.
[28]  Smas CM, Kachinskas D, Liu CM, Xie XZ, Dircks LK, et al. (1998) Transcriptional control of the pref-1 gene in 3T3-L1 adipocyte differentiation - sequence requirement for differentiation-dependent suppression. J Biol Chem 273: 31751–31758.
[29]  Li XQ, Zhao XN, Fang Y, Jiang X, Duong T, et al. (1998) Generation of destabilized green fluorescent protein transcription reporter. J Biol Chem 273: 34970–34975.
[30]  Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, et al. (1995) 15-Deoxy-Delta(12,14)-Prostaglandin J(2) is a ligand for the adipocyte determination factor PPARγ. Cell 83: 803–812.
[31]  Murphy RF, Powers S, Verderame M, Cantor CR, Pollack R (1982) Flow cytofluorometric analysis of insulin binding and internalization by Swiss 3T3 cells. Cytometry 2: 402–406.
[32]  Duckworth WC, Bennett RG, Hamel FG (1998) Insulin degradation: Progress and potential. Endocr Rev 19: 608–624.
[33]  Rosen OM (1987) After Insulin Binds. Science 237: 1452–1458.
[34]  Yamada K, Nakata M, Horimoto N, Saito M, Matsuoka H, et al. (2000) Measurement of glucose uptake and intracellular calcium concentration in single, living pancreatic beta-cells. J Biol Chem 275: 22278–22283.
[35]  Wakil SJ, Stoops JK, Joshi VC (1983) Fatty-Acid Synthesis and Its Regulation. Ann Rev Biochem 52: 537–579.
[36]  Zhao LX, Teter B, Morihara T, Lim GP, Ambegaokar SS, et al. (2004) Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: Implications for Alzheimer's disease intervention. J Neurosci 24: 11120–11126.
[37]  Duckworth WC, Hamel FG, Peavy DE (1997) Two pathways for insulin metabolism in adipocytes. Biochim Biophys Acta-Mol Cell Res 1358: 163–171.
[38]  Temple KA, Basko X, Allison MB, Brady MJ (2007) Uncoupling of 3T3-L1 gene expression from lipid accumulation during adipogenesis. FEBS Lett 5811: 469–474.
[39]  Mattick JS (2007) A new paradigm for developmental biology. J Exp Biol 210: 1526–1547.
[40]  Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Ann Rev Plant Biol 57: 19–53.
[41]  McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA 94: 814–819.
[42]  Kepler TB, Perelson AS (1998) Drug concentration heterogeneity facilitates the evolution of drug resistance. Proc Natl Acad Sci USA 95: 11514–11519.
[43]  Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2: 905–909.
[44]  Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7: 85–96.
[45]  Shigematsu S, Miller SL, Pessin JE (2001) Differentiated 3T3L1 adipocytes are composed of heterogenous cell populations with distinct receptor tyrosine kinase signaling properties. J Biol Chem 276: 15292–15297.
[46]  Zhang HB, Nohr J, Jensen CH, Petersen RK, Bachmann E, et al. (2003) Insulin-like growth factor-1/insulin bypasses Pref-1/FA1-mediated inhibition of adipocyte differentiation. J Biol Chem 278: 20906–20914.
[47]  Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3: 906–918.
[48]  Mandrup S, Loftus TM, MacDougald OA, Kuhajda FP, Lane MD (1997) Obese gene expression at in vivo levels by fat pads derived from sc implanted 3T3-F442A preadipocytes. Proc Natl Acad Sci USA 94: 4300–4305.
[49]  Fukumura D, Ushiyama A, Duda DG, Xu L, Tam J, et al. (2003) Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res 93: 88–97.
[50]  Hennessy BT, Smith DL, Ram PT, Lu YL, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4: 988–1004.
[51]  Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev Cancer 2: 489–501.
[52]  Chen SB, Takanashi SC, Zhang QS, Xiong W, Zhu ST, et al. (2007) Reversine increases the plasticity of lineage-committed mammalian cells. Proc Natl Acad Sci USA 104: 10482–10487.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal