[1] | Calderone RA, editor. (2002) Candida and Candidiasis. Washington: ASM Press.
|
[2] | Fidel PL Jr (2006) Candida-host interactions in HIV disease: relationships in oropharyngeal candidiasis. Adv Dent Res 19: 80–84.
|
[3] | Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20(1): 133–163.
|
[4] | Klein RS, et al. (1984) Oral candidiasis in high-risk patients as the initial manifestation of the acquired immunodeficiency syndrome. New Eng J Med 311: 354–358.
|
[5] | Lal K, et al. (1992) Pilot study comparing the salivary cationic protein concentrations in healthy adults and AIDS patients: correlation with antifungal activity. J AIDS Hum Retrovirol 5: 904–914.
|
[6] | de Repentigny L, Lewandowski D, Jolicoeur P (2004) Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin Microbiol Rev 17(4): 729–759.
|
[7] | Edgar WM (1992) Saliva: its secretion, composition and functions. Brit Dent J 172(8): 305–312.
|
[8] | Humphrey SP, Williamson RT (2001) A review of saliva: normal composition, flow, and function. J Prosthetic Dent 85(2): 162–169.
|
[9] | Helmerhorst EJ, Alagi AS, Siqueira WL, Oppenheim FG (2006) Oral fluid proteolytic effects on histatin 5 structure and function. Arch Oral Biol 51: 1061–1070.
|
[10] | Gyurko C, Lendenmann U, Helmerhorst EJ, Troxler RF, Oppenheim FG (2001) Killing of Candida albicans by histatin 5: cellular uptake and energy requirement. Antonie van Leeuwenhoek 79: 297–309.
|
[11] | Helmerhorst EJ, Troxler RF, Oppenheim FG (2001) The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci USA 98(25): 14637–14642.
|
[12] | Edgerton M, et al. (1998) Candidacidal activity of salivary histatins. J Biol Chem 272(32): 20438–20447.
|
[13] | Oppenheim FG, et al. (1988) Histatins, a novel family of histidine-rich proteins in human parotid secretion. J Biol Chem 263(16): 7472–7477.
|
[14] | Jainkittivong A, Johnson DA, Yeh C-K (1998) The relationship between salivary histatin levels and oral yeast carriage. Oral Microbiol Immun 13: 181–187.
|
[15] | Helmerhorst EJ, et al. (1999) The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274(11): 7286–7291.
|
[16] | Jang WS, Li XS, Sun JN, Edgerton M (2008) The P-113 fragment of Histatin 5 requires a specific peptide sequence for intracellular translocation in Candida albicans which is independent of cell wall binding. Antimicrob Agents Chemother 52(2): 497–504.
|
[17] | Koshlukova SE, Araujo MWB, Baev D, Edgerton M (2000) Released ATP is an extracellular cytotoxic mediator in salivary histatin 5-induced killing of Candida albicans. Infect Immun 68(12): 6848–6856.
|
[18] | Li XS, Reddy MS, Baev D, Edgerton M (2003) Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. J Biol Chem 278(31): 28553–28561.
|
[19] | Koshlukova SE, Lloyd TL, Araujo MWB, Edgerton M (1999) Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem 274(27): 18872–18879.
|
[20] | Mochon AB, Liu H (2008) The antimicrobial peptide histatin-5 causes a spatially restricted disruption on the Candida albicans surface allowing rapid entry of the peptide into the cytoplasm. PLoS Path 4(10): e1000190. doi:10.1371/journal.ppat.1000190.
|
[21] | Mandel ID, Barr CE, Turgeon L (1992) Longitudinal study of parotid saliva in HIV-1 infection. J Oral Path Med 21: 209–213.
|
[22] | Torres SR, Garzino-Demo A, Meeks V, Meiller TF, Jabra-Rizk MA (2008) Salivary Histatin-5 and oral fungal colonization in HIV+ individuals. Mycoses 52: 11–15.
|
[23] | Perlroth J, Choi B, Spellberg B (2007) Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 45(4): 321–346.
|
[24] | Naglik JR, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6(10): 915–926.
|
[25] | Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67(3): 400–428.
|
[26] | de Bernardis F, et al. (1990) Evidence that members of the secretory aspartyl proteinases gene family (SAP), in particular SAP2, are virulence factors for Candida vaginitis. J Infect Dis 179: 201–208.
|
[27] | de Bernardis F, et al. (1996) Elevated aspartic proteinase secretion and experimental pathogenicity of Candida albicans isolates from oral cavities of subjects infected with human immunodeficiency virus. Infect Immun 64: 466–471.
|
[28] | Naglik JR, et al. (2008) Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiol 154(Pt. 11): 3266–3280.
|
[29] | Staib P, Kretschmar M, Nichteriein T, Hof H, Morschhauser J (2000) Differential activation of a Candida albicans virulence gene family during infection. Proc Natl Acad Sci USA 97: 6102–6107.
|
[30] | Hube B (1996) Candida albicans secreted aspartyl proteinases. Curr Top Med Mycol 7(1): 55–69.
|
[31] | Villar CC, Kashleva H, Nobile CJ, Mitchell AP, Dongari-Bagtzoglou A (2007) Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor rim 101p and protease Sap5p. Infect Immun 75(5): 2126–2135.
|
[32] | Albrecht A, et al. (2006) Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J Biol Chem 281(2): 688–694.
|
[33] | Gagnon-Arsenault I, Pairise L, Tremblay J, Bourbonnais Y (2008) Activation mechanism, functional role and shedding of glycosylphosphatidylinositol-anchored Y ps 1 p at the Saccharomyces cerevisiae cell surface. Molec Microbiol 69(4): 982–993.
|
[34] | Ruissen ALA, et al. (2003) Internalisation and degradation of histatin 5 by Candida albicans. J Biol Chem 384(1): 183–190.
|
[35] | Kumamoto CA (2008) Niche-specific gene expression during C. albicans infection. Curr Opin Microbiol 11(4): 325–330.
|
[36] | Brown AJ, Odds FC, Gow NA (2007) Infection-related gene expression in Candida albicans. Curr Opin Microbiology 10(4): 307–313.
|
[37] | Hube B (2006) Infection-associated gene of Candida albicans. Future Microbiology 1: 209–218.
|
[38] | Xu L, Lal K, Santarpia RP III, Pollock JJ (1993) Salivary proteolysis of histidine-rich polypeptides and the antifungal activity of peptide degradation products. Arcf Oral Biol 38(4): 277–283.
|
[39] | Cannon RD, Chaffin WL (1999) Oral colonization by Candida albicans. Crit Rev Oral Biol Med 10(3): 359–383.
|
[40] | Chandra J, et al. (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183(18): 5385–5394.
|
[41] | Munro CA, Hube B (2002) Anti-fungal therapy at the HAART of viral therapy. Trends Microbiol 10(4): 177–178.
|
[42] | Hube B, et al. (1997) Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65(9): 3529–3538.
|
[43] | Kretschmar M, Felk A, Staib P, Schaller M, He? D, et al. (2002) Individual acidic aspartic proteinases (Saps)1-6 of Candida albicans are not indispensable for invasion and colonisation of the gastrointestinal tract in mice. Microb Path 32: 61–70.
|
[44] | Sanglard D, Hube B, Monod M, Odds FC, Gow NAR (1997) A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65(9): 3539–3546.
|
[45] | Borg-von Zepelin M, et al. (1998) The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol Microbiol 28(3): 543–54.
|