[1] | Glawe DA (2008) The powdery mildews: a review of the world's most familiar (yet poorly known) plant pathogens. Annu Rev Phytopathol 46: 27–51.
|
[2] | Amano K (1986) Host range and geographical distribution of the powdery mildew fungi. Tokyo: Japan Scientific Society Press.. 741 p.
|
[3] | Razdan VK, Sabitha M (2009) Integrated disease management: Concepts and practices. In: Peshin R, Dhawan AK, editors. Integrated pest management: Innovation-development process. Dordrecht: Springer. pp. 369–389.
|
[4] | Hijwegen T (1992) Biological control of cucumber powdery mildew with Tilletiopsis minor under greenhouse conditions. Eur J Plant Pathol 98: 221–225.
|
[5] | Urquhart EJ, Menzies JG, Punja ZK (1994) Growth and biological control activity of Tilletiopsis species against powdery mildew (Sphaerotheca fuliginea) on greenhouse cucumber. Phytopathology 84: 342–351.
|
[6] | Verhaar MA, Hijwegen T, Zadoks JC (1996) Glasshouse experiments on biocontrol of cucumber powdery mildew (Sphaerotheca fuliginea) by the mycoparasites Verticillium lecanii and Sporothrix rugulosa. Biol Control 6: 353–360.
|
[7] | Dik AJ, Verhaar MA, Bélanger RR (1998) Comparison of three biological control agents against cucumber powdery mildew (Sphaerotheca fuliginea) in semi-commercial-scale glasshouse trials. Eur J Plant Pathol 104: 413–423.
|
[8] | Koitabashi M, Iwao M, Tsushima S (2002) Aromatic substances inhibiting wheat powdery mildew produced by a fungus detected with a new screening method for phylloplane fungi. J Gen Plant Pathol 68: 183–188.
|
[9] | English-Loeb G, Norton AP, Gadoury DM, Seem RC, Wilcox WF (1999) Control of powdery mildew in wild and cultivated grapes by a tydeid mite. Biol Control 14: 97–103.
|
[10] | English-Loeb G, Norton AP (2007) Biological control of grape powdery mildew using mycophagous mites. Plant Dis 91: 421–429.
|
[11] | Eilenberg J (2006) Concepts and visions of biological control. In: Eilenberg J, Hokkanen HMT, editors. An ecological and societal approach to biological control. Dordrecht: Springer. pp. 1–11.
|
[12] | Sutherland AM, Parrella MP (2009a) Biology and co-occurrence of Psyllobora vigintimaculata (Coleoptera: Coccinellidae) and powdery mildews in an urban landscape of California. Ann Entomol Soc Am 102: 484–491.
|
[13] | Sutherland AM, Parrella MP (2009b) Mycophagy in Coccinellidae: review and synthesis. Biol Control 51: 284–293.
|
[14] | De Moraes CM, Lewis WJ, Paré PW, Tumlinson JH (1998) Herbivore infested plants selectively attract parasitoids. Nature 393: 570–574.
|
[15] | De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410: 577–580.
|
[16] | Price PW (1981) Semiochemicals in evolutionary time. In: Nordlund DA, Jones RL, Lewis WJ, editors. Semiochemicals, their role in pest control. New York: John Wiley and Sons. pp. 251–279.
|
[17] | Pickett JA, Bruce TJA, Chamberlain K, Hassanali A, Khan ZR, et al. (2006) Plant volatiles yielding new ways to exploit plant defence. In: Dicke M, Takken W, editors. Chemical ecology: from gene to ecosystem. Dordrecht: Springer. pp. 161–173.
|
[18] | Sasaji H (1998) Natural history of the ladybirds. Tokyo: University of Tokyo Press.. 251 p.
|
[19] | Gordon RD (1985) The coccinellidae (Coleoptera) of America North of Mexico. J New York Entomol S 93: 1–912.
|
[20] | Sutherland AM, Parrella MP (2006) Quantification of powdery mildew consumption by a native coccinellid: implications for biological control? California conference on biological control. 5. : 188–192. Available: http://www.cnr.berkeley.edu/biocon/PDF/C?CBCV/Complete%20Proceedings%20for%20CCBC?%20V.pdf via the Internet. Accessed 23 Feb 2011.
|
[21] | Pettersson J, Ninkovic V, Glinwood R, Al Abassi S, Birkett M, et al. (2008) Chemical stimuli supporting foraging behaviour of Coccinella septempunctata L. (Coleoptera: Coccinellidae): volatiles and allelobiosis. Appl Entomol Zool 43: 315–321.
|
[22] | Francis F, Lognay G, Haubruge E (2004) Olfactory responses to aphid and host plant volatile releases: (E)-β-farnesene an effective kairomone for the predator Adalia bipunctata. J Chem Ecol 30: 741–755.
|
[23] | Ninkovic V, Al Abassi S, Pettersson J (2001) The influence of aphid-induced plant volatiles on ladybird beetle searching behavior. Biol Control 21: 191–195.
|
[24] | Nakamuta K (1991) Aphid alarm pheromone component, (E)-β-farnesene, and local search by a predatory lady beetle Coccinella septempunctata bruckii Mulsant (Coleoptera: Coccinellidae). Appl Entomol Zool 26: 1–7.
|
[25] | Jamal E, Brown GC (2001) Orientation of Hippodamia convergens (Coleoptera: Coccinellidae) larvae to volatile chemicals associated with Myzus nicotianae (Homoptera: Aphidiidae). Environ Entomol 30: 1012–1016.
|
[26] | Giorgi JA, Vandenberg NJ, McHugh JV, Forrester JA, ?lipiński SA, et al. (2009) The evolution of food preferences in Coccinellidae. Biol Control 51: 215–231.
|
[27] | Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 57: 289–300.
|
[28] | Assaf S, Hadar Y, Dosoretz CG (1997) 1-Octen-3-ol and 13-hydroperoxylinoleate are products of distinct pathways in the oxidative breakdown of linoleic acid by Pleurotus pulmonarius. Enzyme Microb Tech 21: 484–490.
|
[29] | Darriet P, Pons M, Henry R, Dumont O, Findeling V, et al. (2002) Impact odorants contributing to the fungus type aroma from grape berries contaminated by powdery mildew (Uncinula necator); incidence of enzymatic activities of the yeast Saccharomyces cerevisiae. J Agric Food Chem 50: 3277–3282.
|
[30] | Combet E, Henderson J, Eastwood DC, Burton KS (2006) Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47: 317–326.
|
[31] | Assaf S, Hadar Y, Dosoretz CG (1995) Biosynthesis of 13-hydroperoxylinoleate, 10-oxo-8-decenoic acid and 1-octen-3-ol from linoleic acid by a mycelial-pellet homogenate of Pleurotus pulmonarius. J Agric Food Chem 43: 2173–2178.
|
[32] | Morawicki RO, Beelman RB, Petreson D, Ziegler G (2005) Biosynthesis of 1-octen-3-ol and 10-oxo-trans -8-decenoic acid using a crude homogenate of Agaricus bisporus. Optimization of the reaction: kinetic factors. Process Biochem 40: 131–137.
|
[33] | Grove JF, Blight MM (1983) The oviposition attractant for the mushroom phorid Megaselia halterata: the identification of volatiles present in mushroom house air. J Sci Food Agric 34: 181–185.
|
[34] | Guevara R, Rayner ADM, Reynolds SE (2000) Orientation of specialist and generalist fungivorous ciid beetles to host and non-host odours. Physiol Entomol 25: 288–295.
|
[35] | F?ldt J, Jonsell M, Nordlander G, Borg-Karlson AK (1999) Volatiles of bracket fungi Fomitopsis pinicola and Fomes fomentarius and their function as insect attractants. J Chem Ecol 25: 567–590.
|
[36] | Takeuchi M, Sasaki Y, Sato C, Iwakuma S, Isozaki A, et al. (2000) Seasonal host utilization of mycophagous ladybird Illeis koebelei (Coleoptera: Coccinellidae). Jpn J Appl Entomol Zool 44: 89–94.
|
[37] | Grayer RJ, Harborne JB (1994) A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry 37: 19–42.
|
[38] | Ito T, Kumazawa K (1995) Precursors of antifungal substances from cherry leaves (Prunus yedoensis Matsumura). Biosci Biotech Biochem 59: 1944–1945.
|
[39] | D'Auria FD, Tecca M, Strippoli V, Salvatore G, Battinelli L, et al. (2005) Antifungal activity of lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Med Mycol 43: 391–396.
|
[40] | English-Loeb G, Norton AP, Gadoury DM, Seem RC, Wilcox WF (2005) Tri-trophic interactions among grapevines, a fungal pathogen, and a mycophagous mite. Ecol Appl 15: 1679–1688.
|
[41] | Norton AP, English-Loeb G, Gadoury DM, Seem RC (2000) Mycophagous mites and foliar pathogens: leaf domatia mediate tritrophic interactions in grapes. Ecology 81: 490–499.
|
[42] | Ichiki RT, Kainoh Y, Kugimiya S, Takabayashi J, Nakamura S (2008) Attraction to herbivore-induced plant volatiles by the host-foraging parasitoid fly Exorista japonica. J Chem Ecol 34: 614–621.
|
[43] | Riffell JA, Lei H, Christensen TA, Hildebrand JG (2009) Characterization and coding of behaviorally significant odor mixtures. Curr Biol 19: 335–340.
|
[44] | Webster B, Bruce T, Pickett J, Hardie J (2010) Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim Behav 79: 451–457.
|
[45] | Eigenbrode SD, Ding H, Shiel P, Berger PH (2002) Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera; Aphididae). Proc R Soc B 269: 455–460.
|
[46] | Jiménez-Martínez ES, Bosque-Pérez NA, Berger PH, Zemetra RS, Ding H, et al. (2004) Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to barley yellow dwarf virus-infected transgenic and untransformed wheat. Environ Entomol 33: 1207–1216.
|
[47] | McLeod G, Gries R, von Reuβ SH, Rahe JE, McIntosh R, et al. (2005) The pathogen causing Dutch elm disease makes host trees attract insect vectors. Proc R Soc B 272: 2499–2503.
|
[48] | Mauck KE, De Moraes CM, Mescher MC (2010) Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Natl Acad Sci USA 107: 3600–3605.
|
[49] | Raguso RA, Roy BA (1998) ‘Floral’ scent production by Puccinia rust fungi that mimic flowers. Mol Ecol 7: 1127–1136.
|
[50] | Naef A, Roy BA, Kaiser R, Honegger R (2002) Insect-mediated reproduction of systemic infections by Puccinia arrhenatheri on Berberis vulgaris. New Phytol 154: 717–730.
|
[51] | Ngugi HK, Scherm H (2006) Mimicry in plant-parasitic fungi. FEMS Microbiol Lett 257: 171–176.
|