All Title Author
Keywords Abstract

PLOS ONE  2011 

Ischemic Tolerance Protects the Rat Retina from Glaucomatous Damage

DOI: 10.1371/journal.pone.0023763

Full-Text   Cite this paper   Add to My Lib

Abstract:

Glaucoma is a leading cause of acquired blindness which may involve an ischemic-like insult to retinal ganglion cells and optic nerve head. We investigated the effect of a weekly application of brief ischemia pulses (ischemic conditioning) on the rat retinal damage induced by experimental glaucoma. Glaucoma was induced by weekly injections of chondroitin sulfate (CS) in the rat eye anterior chamber. Retinal ischemia was induced by increasing intraocular pressure to 120 mmHg for 5 min; this maneuver started after 6 weekly injections of vehicle or CS and was weekly repeated in one eye, while the contralateral eye was submitted to a sham procedure. Glaucoma was evaluated in terms of: i) intraocular pressure (IOP), ii) retinal function (electroretinogram (ERG)), iii) visual pathway function (visual evoked potentials, (VEPs)) iv) histology of the retina and optic nerve head. Retinal thiobarbituric acid substances levels were assessed as an index of lipid peroxidation. Ischemic conditioning significantly preserved ERG, VEPs, as well as retinal and optic nerve head structure from glaucomatous damage, without changes in IOP. Moreover, ischemia pulses abrogated the increase in lipid peroxidation induced by experimental glaucoma. These results indicate that induction of ischemic tolerance could constitute a fertile avenue for the development of new therapeutic strategies in glaucoma treatment.

References

[1]  Belforte N, Sande P, de Zavalía N, Knepper PA, Rosenstein RE (2010) Effect of chondroitin sulfate on intraocular pressure in rats. Invest Ophthalmol Vis Sci 51: 5768–5775.
[2]  Chung HS, Harris A, Evans DW, Kagemann L, Garzozi HJ, et al. (1999) Vascular aspects in the pathophysiology of glaucomatous optic neuropathy. Surv Ophthalmol 43: S43–50.
[3]  Flammer J (1994) The vascular concept of glaucoma. Surv Ophthalmol 38: S3–6.
[4]  Delaney Y, Walshe TE, O'Brien C (2006) Vasospasm in glaucoma: clinical and laboratory aspects. Optom Vis Sci 83: 406–414.
[5]  Gugleta K (2009) Vascular risk factors in glaucoma – diagnostics. Praxis (Bern 1994) 98: 201–207.
[6]  Flammer J, Orgül S, Costa VP, Orzalesi N, Krieglstein GK, et al. (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21: 359–393.
[7]  Fuchsj?ger-Mayrl G, Wally B, Georgopoulos M, Rainer G, Kircher K, et al. (2004) Ocular blood flow and systemic blood pressure in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 45: 834–839.
[8]  Galassi F, Sodi A, Ucci F, Renieri G, Pieri B, et al. (2003) Ocular hemodynamics and glaucoma prognosis: a color Doppler imaging study. Arch Ophthalmol 121: 1711–1715.
[9]  Zink JM, Grunwald JE, Piltz-Seymour J, Staii A, Dupont J (2003) Association between lower optic nerve laser Doppler blood volume measurements and glaucomatous visual field progression. Br J Ophthalmol 87: 1487–1491.
[10]  Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, et al. (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23: 91–147.
[11]  Moreno MC, Campanelli J, Sande P, Sánez DA, Keller Sarmiento MI, et al. (2004) Retinal oxidative stress induced by high intraocular pressure. Free Radic Biol Med 37: 803–812.
[12]  Moreno MC, Sande P, Marcos HA, de Zavalía N, Keller Sarmiento MI, et al. (2005) Effect of glaucoma on the retinal glutamate/glutamine cycle activity. FASEB J 19: 1161–1162.
[13]  Roth S, Li B, Rosenbaum PS, Gupta H, Goldstein IM, et al. (1998) Preconditioning provides complete protection against retinal ischemic injury in rats. Invest Ophthalmol Vis Sci 39: 777–785.
[14]  Roth S (2004) Endogenous neuroprotection in the retina. Brain Res Bull 62: 461–466.
[15]  Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7: 437–448.
[16]  Na HS, Kim YI, Yoon YW, Han HC, Nahm SH, et al. (1996) Ventricular premature beat-driven intermittent restoration of coronary blood flow reduces the incidence of reperfusion-induced ventricular fibrillation in a cat model of regional ischemia. Am Heart J 132: 78–83.
[17]  Zhao H, Sapolsky RM, Steinberg GK (2006) Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab 26: 1114–1121.
[18]  Fernandez DC, Bordone MP, Chianelli MS, Rosenstein RE (2009) Retinal neuroprotection against ischemia-reperfusion damage induced by postconditioning. Invest Ophthalmol Vis Sci 50: 3922–3930.
[19]  Chauhan BC, Pan J, Archibald ML, LeVatte TL, Kelly ME, et al. (2002) Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage. Invest Ophthalmol Vis Sci 43: 2969–2976.
[20]  Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41: 2797–2810.
[21]  Grippo TM, Hood DC, Kanadani FN, Ezon I, Greenstein VC, et al. (2006) A comparison between multifocal and conventional VEP latency changes secondary to glaucomatous damage. Invest Ophthalmol Vis Sci 47: 5331–5336.
[22]  Papst N, Bopp M, Schnaudigel OE (1984) Pattern electroretinogram and visually evoked cortical potentials in glaucoma. Graefes Arch Clin Exp Ophthalmol 222: 29–33.
[23]  Buckingham BP, Inman DM, Lambert W, Oglesby E, Calkins DJ, et al. (2008) Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J Neurosci 28: 2735–2744.
[24]  Canola K, Angénieux B, Tekaya M, Quiambao A, Naash MI, et al. (2007) Retinal stem cells transplanted into models of late stages of retinitis pigmentosa preferentially adopt a glial or a retinal ganglion cell fate. Invest Ophthalmol Vis Sci 48: 446–454.
[25]  Dijk F, Bergen AA, Kamphuis W (2007) GAP-43 expression is upregulated in retinal ganglion cells after ischemia/reperfusion-induced damage. Exp Eye Res 84: 858–867.
[26]  Yamamoto T, Kitazawa Y (1998) Vascular pathogenesis of normal-tension glaucoma: a possible pathogenetic factor, other than intraocular pressure, of glaucomatous optic neuropathy. Prog Retin Eye Res 17: 127–143.
[27]  Quigley HA (1999) Neuronal death in glaucoma. Prog Retin Eye Res 18: 39–57.
[28]  Tezel G (2006) Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 25: 490–513.
[29]  Li B, Yang C, Rosenbaum DM, Roth S (2000) Signal transduction mechanisms involved in ischemic preconditioning in the rat retina in vivo. Exp Eye Res 70: 755–765.
[30]  Sakamoto K, Kuwagata M, Nakahara T, Ishii K (2001) Late preconditioning in rat retina: involvement of adenosine and ATP-sensitive K(+) channel. Eur J Pharmacol 418: 89–93.
[31]  Yu SY, Chiu JH, Yang SD, Yu HY, Hsieh CC, et al. (2005) Preconditioned hyperbaric oxygenation protects the liver against ischemia-reperfusion injury in rats. J Surg Res 128: 28–36.
[32]  Kwong JM, Lam TT, Caprioli J (2003) Hyperthermic pre-conditioning protects retinal neurons from N-methyl-D-aspartate (NMDA)-induced apoptosis in rat. Brain Res 970: 119–130.
[33]  Franco PJ, Fernandez DC, Sande PH, Keller Sarmiento MI, Chianelli M, et al. (2008) Effect of bacterial lipopolysaccharide on ischemic damage in the rat retina. Invest Ophthalmol Vis Sci 49: 4604–4612.
[34]  Casson RJ, Wood JP, Melena J, Chidlow G, Osborne NN (2003) The effect of ischemic preconditioning on light-induced photoreceptor injury. Invest Ophthalmol Vis Sci 44: 1348–1354.
[35]  Takahata K, Katsuki H, Kume T, Nakata D, Ito K, et al. (2003) Retinal neuronal death induced by intraocular administration of a nitric oxide donor and its rescue by neurotrophic factors in rats. Invest Ophthalmol Vis Sci 44: 1760–1766.
[36]  Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275.

Full-Text

comments powered by Disqus