All Title Author
Keywords Abstract

PLOS ONE  2012 

Biological Effects of Cigarette Smoke in Cultured Human Retinal Pigment Epithelial Cells

DOI: 10.1371/journal.pone.0048501

Full-Text   Cite this paper   Add to My Lib


The goal of the present study was to determine whether treatment with cigarette smoke extract (CSE) induces cell loss, cellular senescence, and extracellular matrix (ECM) synthesis in primary human retinal pigment epithelial (RPE) cells. Primary cultured human RPE cells were exposed to 2, 4, 8, and 12% of CSE concentration for 24 hours. Cell loss was detected by cell viability assay. Lipid peroxidation was assessed by loss of cis-parinaric acid (PNA) fluorescence. Senescence-associated ?-galactosidase (SA-?-Gal) activity was detected by histochemical staining. Expression of apolipoprotein J (Apo J), connective tissue growth factor (CTGF), fibronectin, and laminin were examined by real-time PCR, western blot, or ELISA experiments. The results showed that exposure of cells to 12% of CSE concentration induced cell death, while treatment of cells with 2, 4, and 8% CSE increased lipid peroxidation. Exposure to 8% of CSE markedly increased the number of SA-?-Gal positive cells to up to 82%, and the mRNA expression of Apo J, CTGF, and fibronectin by approximately 3–4 fold. Treatment with 8% of CSE also increased the protein expression of Apo J and CTGF and the secretion of fibronectin and laminin. Thus, treatment with CSE can induce cell loss, senescent changes, and ECM synthesis in primary human RPE cells. It may be speculated that cigarette smoke could be involved in cellular events in RPE cells as seen in age-related macular degeneration.


[1]  Congdon N, O'Colmain B, Klaver CC, Klein R, Mu?oz B, et al. (2004) Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol 122: 477–485.
[2]  Ferris FL 3rd (1983) Senile macular degeneration: review of epidemiologic features. Am J Epidemiol 118: 132–151.
[3]  Klein R, Wang Q, Klein BE, Moss SE, Meuer SM (1995) The relationship of age-related maculopathy, cataract, and glaucoma to visual acuity. Invest Ophthalmol Vis Sci 36: 182–191.
[4]  Leibowitz HM, Krueger DE, Maunder LR, Milton RC, Kini MM, et al. (1980) The Framingham Eye Study monograph: An ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973–1975. Surv Ophthalmol 24: 335–610.
[5]  Chen Y, Bedall M, Zhang K (2010) Age-related macular degeneration: genetic and environmental factors of disease. Mol Interv 10: 271–281.
[6]  Francis PJ, Klein ML (2011) Update on the role of genetics in the onset of age-related macular degeneration. Clin Ophthalmol 5: 1127–1133.
[7]  Chakravarthy U, Wong TY, Fletcher A, Piault E, Evans C, et al. (2010) Clinical risk factors for age-related macular degeneration: a systemic review and meta-analysis. BMC Ophthalmol 10: 31.
[8]  Khan JC, Thurlby DA, Shahid H, Clayton DG, Yates JR, et al. (2006) Smoking and age related macular degeneration: the number of pack years of cigarette smoking is a major determinant of risk for both geographic atrophy and choroidal neovascularisation. Br J Ophthalmol 90: 75–80.
[9]  Klein R, Knudtson MD, Cruickshanks KJ, Klein BE (2008) Further observations on the association between smoking and the long-term incidence and progression of age-related macular degeneration: the Beaver Dam Eye Study. Arch Ophthalmol 126: 115–121.
[10]  Thornton J, Edwards R, Mitchell P, Harrison RA, Buchan I, et al. (2005) Smoking and age-related macular degeneration: a review of association. Eye 19: 935–944.
[11]  Smith CJ, Hansch C (2000) The relative toxicity of compounds in mainstream cigarette smoke condensate. Food Chem Toxicol 38: 637–646.
[12]  Solberg Y, Rosner M, Belkin M (1998) The association between cigarette smoking and ocular diseases. Surv Ophthalmol 42: 535–547.
[13]  Terman A (2001) Garbage catastrophe theory of aging: imperfect removal of oxidative damage? Redox Rep 6: 15–26.
[14]  Sarks JP, Sarks SH, Killingsworth MC (1988) Evolution of geographic atrophy of the retinal pigment epithelium. Eye 2: 552–577.
[15]  Roth F, Bindewald A, Holz FG (2004) Keypathophysiologic pathways in age-related macular disease. Graefes Arch Clin Exp Ophthalmol 242: 710–716.
[16]  Dumont P, Burton M, Chen QM, Gonos ES, Frippiat C, et al. (2000) Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med 28: 361–373.
[17]  Kim KH, Park GT, Lim YB, Rue SW, Jung JC, et al. (2004) Expression of connective tissue growth factor, a biomarker in senescence of human diploid fibroblasts, is up-regulated by a transforming growth factor-beta-mediated signaling pathway. Biochem Biophys Res Commun 318: 819–825.
[18]  Toussaint O, Medrano EE, von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35: 927–945.
[19]  Wang L, Clark ME, Crossman DK, Kojima K, Messinger JD, et al. (2010) Abundant lipid and protein components of drusen. PLoS One 5: e10329.
[20]  L?ffler KU, Lee WR (1986) Basal linear deposit in the human macula. Graefes Arch Clin Exp Ophthalmol 224: 493–501.
[21]  Nagai N, Klimava A, Lee WH, Izumi-Nagai K, Handa JT (2009) CTGF is increased in basal deposits and regulates matrix production through the ERK (p42/p44mapk) MAPK and the p38 MAPK signaling pathways. Invest Ophthalmol Vis Sci 50: 1903–1910.
[22]  Newsome DA, Hewitt AT, Huh W, Robey PG, Hassell JR (1987) Detection of specific extracellular matrix molecules in drusen, Bruch's membrane, and ciliary body. Am J Ophthalmol 104: 373–381.
[23]  An E, Lu X, Flippin J, Devaney JM, Halligan B, et al. (2006) Secreted Proteome Profiling in human RPE cell cultures derived from donors with age related macular degeneration and age matched healthy donors. J Proteome Res 5: 2599–2610.
[24]  van der Schaft TL, Mooy CM, de Bruijn WC, Bosman FT, de Jong PT (1994) Immunohistochemical light and electron microscopy of basal laminar deposit. Graefe's Arch Clin Exp Ophthalmol 232: 40–46.
[25]  Baglole CJ, Sime PJ, Phipps RP (2008) Cigarette smoke-induced expression of heme oxygenase-1 in human lung fibroblasts is regulated by intracellular glutathione. Am J Physiol Lung Cell Mol Physiol 295: L624–L636.
[26]  Bernhard D, Pfister G, Huck CW, Kind M, Salvenmoser W, et al. (2003) Disruption of vascular endothelial homeostasis by tobacco smoke: impact on atherosclerosis. FASEB J 17: 2302–2304.
[27]  Shapiro SD (2004) Smoke gets in your cells. Am J Respir Cell Mol Biol 31: 481–482.
[28]  Campochiaro PA, Jerdon JA, Glaser BM (1986) The extracellular matrix of human retinal pigment epithelial cells in vivo and its synthesis in vitro. Invest Ophthalmol Vis Sci 27: 1615–1621.
[29]  Yu AL, Fuchshofer R, Kook D, Kampik A, Bloemendal H, et al. (2009) Subtoxic oxidative stress induces senescence in retinal pigment epithelial cells via TGF-beta release. Invest Ophthalmol Vis Sci 50: 926–935.
[30]  Yu AL, Lorenz RL, Haritoglou C, Kampik A, Welge-Lussen U (2009) Biological effects of native and oxidized low-density lipoproteins in cultured human retinal pigment epithelial cells. Exp Eye Res 88: 495–503.
[31]  Leschey KH, Hackett SF, Singer JH, Campochiaro PA (1990) Growth factor responsiveness of human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 31: 839–846.
[32]  Carp H, Janoff A (1978) Possible mechanisms of emphysema in smokers. In vitro suppression of serum elastase-inhibitory capacity by fresh cigarette smoke and its prevention by antioxidants. Am Rev Respir Dis 118: 617–621.
[33]  Djordjevic M, Fan J, Ferguson S, Hoffmann D (1995) Self-regulation of smoking intensity. Smoke yields of the low-nicotine, low-“tar” cigarettes. Carcinogenesis 16: 2015–2021.
[34]  Zuccaro P, Altieri I, Rosa M, Passa AR, Pichini S, et al. (1993) Determination of nicotine and four metabolites in the serum of smokers by high performance liquid chromatography with ultraviolet detection. J Chromatogr 621: 257–261.
[35]  Carini M, Aldini G, Piccone M, Facino RM (2000) Fluorescent probes as markers of oxidative stress in keratinocyte cell lines following UVB exposure. Farmaco 55: 526–534.
[36]  Hodges NJ, Green RM, Chipman JK, Graham M (2007) Induction of DNA strand breaks and oxidative stress in HeLa cells by ethanol is dependent on CYP2E1 expression. Mutagenesis 22: 189–194.
[37]  Dimri GP, Lee X, Basile G, Acosta M, Scott G, et al. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367.
[38]  Welge-Lüssen U, May CA, Eichhorn M, Bloemendal H, Lütjen-Drecoll E (1999) AlphaB-crystallin in the trabecular meshwork is inducible by transforming growth factor-beta. Invest Ophthalmol Vis Sci 40: 2235–2241.
[39]  Petrukhin K (2007) New therapeutic targets in atrophic age-related macular degeneration. Expert Opin Ther Targets 11: 625–639.
[40]  Jia L, Liu Z, Sun L, Miller SS, Ames BN, et al. (2007) Acrolein, a toxicant in cigarette smoke, causes oxidative damage and mitochondrial dysfunction in RPE cells: Protection by (R)-alpha-lipoic acid. Invest Ophthalmol Vis Sci 48: 339–348.
[41]  Sharma A, Neekhra A, Gramajo AL, Patil J, Chwa M, et al. (2008) Effects of benzo(e)pyrene, a toxic component of cigarette smoke, on human retinal pigment epithelial cells in vitro. Invest Ophthalmol Vis Sci 49: 5111–5117.
[42]  Kalariya NM, Wills NK, Ramana KV, Srivastava SK, van Kuijk FJ (2009) Cadmium-induced apoptotic death of human retinal pigment epithelial cells is mediated by MAPK pathway. Exp Eye Res 89: 494–502.
[43]  Bertram KM, Baglole CJ, Phipps RP, Libby RT (2009) Molecular regulation of cigarette smoke induced-oxidative stress in human retinal pigment epithelial cells: implications for age-related macular degeneration. Am J Physiol Cell Physiol 297: C1200–C1210.
[44]  Patil AJ, Gramajo AL, Sharma A, Seigel GM, Kuppermann BD, et al. (2009) Differential effects of nicotine on retinal and vascular cells in vitro. Toxicology 259: 69–76.
[45]  Chen J, Goligorsky MS (2006) Premature senescence of endothelial cells: Methusaleh's dilemma. Am J Physiol Heart Circ Physiol 290: 1729–1739.
[46]  Ehrlich R, Kheradiya NS, Winston DM, Moore DB, Wirostko B, et al. (2009) Age-related ocular vascular changes. Graefes Arch Clin Exp Ophthalmol 247: 583–591.
[47]  Kaarniranta K, Salminen A, Eskelinen EL, Kopitz J (2009) Heat shock proteins as gatekeepers of proteolytic pathways-Implications for age-related macular degeneration (AMD). Ageing Res Rev 8: 128–139.
[48]  Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122: 598–614.
[49]  Matsunaga H, Handa JT, Aotaki-Keen A, Sherwood SW, West MD, et al. (1999) Beta-galactosidase histochemistry and telomere loss in senescent retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 40: 197–202.
[50]  Wang XF, Cui JZ, Nie W, Prasad SS, Matsubara JA (2004) Differential gene expression of early and late passage retinal pigment epithelial cells. Exp Eye Res 79: 209–221.
[51]  Mishima K, Handa JT, Aotaki-Keen A, Lutty GA, Morse LS, et al. (1999) Senescence-associated beta-galactosidase histochemistry for the primate eye. Invest Ophthalmol Vis Sci 40: 1590–1593.
[52]  Honda S, Hjelmeland LM, Handa JT (2002) Senescence associated beta galactosidase activity in human retinal pigment epithelial cells exposed to mild hyperoxia in vitro. Br J Ophthalmol 86: 159–162.
[53]  Sakaguchi H, Miyagi M, Shadrach KG, Rayborn ME, Crabb JW (2002) Clusterin is present in drusen in age-related macular degeneration. Exp Eye Res 74: 547–549.
[54]  Young RW (1987) Pathophysiology of age-related macular degeneration. Surv Ophthalmol 31: 291–306.
[55]  Fuchshofer R, Yu AL, Teng HH, Strauss R, Kampik A, et al. (2009) Hypoxia/reoxygenation induces CTGF and PAI-1 in cultured human retinal pigment epithelium cells. Exp Eye Res 88: 889–899.
[56]  Espinosa-Heidmann DG, Suner IJ, Catanuto P, Hernandez EP, Marin-Castano ME, et al. (2006) Cigarette smoke–related oxidants and the development of sub-RPE deposits in an experimental animal model of dry AMD. Invest Ophthalmol Vis Sci 47: 729–737.
[57]  Fujihara M, Nagai N, Sussan TE, Biswal S, Handa JT (2008) Chronic cigarette smoke causes oxidative damage and apoptosis to retinal pigmented epithelial cells in mice. PLoS ONE 3: e3119.
[58]  Cardoso JF, Mendes FA, Amadeu TP, Romana-Souza B, Valen?a SS, et al. (2009) Ccn2/Ctgf overexpression induced by cigarette smoke during cutaneous wound healing is strain dependent. Toxicol Pathol 37: 175–182.


comments powered by Disqus