All Title Author
Keywords Abstract

PLOS ONE  2011 

A Double-Blind Randomized Phase I Clinical Trial Targeting ALVAC-HIV Vaccine to Human Dendritic Cells

DOI: 10.1371/journal.pone.0024254

Full-Text   Cite this paper   Add to My Lib


Background We conducted a novel pilot study comparing different delivery routes of ALVAC-HIV (vCP205), a canarypox vaccine containing HIV gene inserts: env, gag and pol. We explored the concept that direct ex vivo targeting of human dendritic cells (DC) would enhance the immune response compared to either conventional intramuscular or intradermal injections of the vaccine alone. Methodology/Principal Findings Healthy HIV-1 uninfected volunteers were administered ALVAC-HIV or placebo by intramuscular injection (IM), intradermal injection (ID) or subcutaneous injection (SQ) of autologous ex vivo transfected DC at months 0, 1, 3 and 6. All vaccine delivery routes were well tolerated. Binding antibodies were observed to both the ALVAC vector and HIV-1 gp160 proteins. Modest cellular responses were observed in 2/7 individuals in the DC arm and 1/8 in the IM arm as determined by IFN-γ ELISPOT. Proliferative responses were most frequent in the DC arm where 4/7 individuals had measurable responses to multiple HIV-1 antigens. Loading DC after maturation resulted in lower gene expression, but overall better responses to both HIV-1 and control antigens, and were associated with better IL-2, TNF-α and IFN-γ production. Conclusions/Significance ALVAC-HIV delivered IM, ID or SQ with autologous ex vivo transfected DC proved to be safe. The DC arm was most immunogenic. Proliferative immune responses were readily detected with only modest cytotoxic CD8 T cell responses. Loading mature DC with the live viral vaccine induced stronger immune responses than loading immature DC, despite increased transgene expression with the latter approach. Volunteers who received the autologous vaccine loaded mature DC developed a broader and durable immune response compared to those vaccinated by conventional routes. Trial Registration NCT00013572


[1]  UNAIDS (2009) 2009 AIDS Epidemic Update.
[2]  Virgin HW, Walker BD (2010) Immunology and the elusive AIDS vaccine. Nature 464: 224–231.
[3]  Database of AIDS Vaccine Candidates in Clinical Trials IAVI.
[4]  Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, et al. (2009) Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand. N Engl J Med.
[5]  Steinman RM (2007) Dendritic cells: understanding immunogenicity. Eur J Immunol 37: Suppl 1S53–60.
[6]  Steinman RM (2007) Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat Med 13: 1155–1159.
[7]  Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252.
[8]  Dhodapkar MV, Bhardwaj N (2000) Active immunization of humans with dendritic cells. J Clin Immunol 20: 167–174.
[9]  Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137: 1142–1162.
[10]  Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449: 419–426.
[11]  Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, et al. (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4: 328–332.
[12]  Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, et al. (2001) Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 61: 6451–6458.
[13]  Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, et al. (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190: 1669–1678.
[14]  Marovich MA, Mascola JR, Eller MA, Louder MK, Caudrelier PA, et al. (2002) Preparation of clinical-grade recombinant canarypox-human immunodeficiency virus vaccine-loaded human dendritic cells. J Infect Dis 186: 1242–1252.
[15]  Erdmann M, Schuler-Thurner B (2010) Towards a standardized protocol for the generation of monocyte-derived dendritic cell vaccines. Methods Mol Biol 595: 149–163.
[16]  Cheong C, Matos I, Choi JH, Dandamudi DB, Shrestha E, et al. (2010) Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) dendritic cells for immune T cell areas. Cell 143: 416–429.
[17]  Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, et al. (1999) Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 223: 1–15.
[18]  Currier JR, deSouza M, Chanbancherd P, Bernstein W, Birx DL, et al. (2002) Comprehensive screening for human immunodeficiency virus type 1 subtype-specific CD8 cytotoxic T lymphocytes and definition of degenerate epitopes restricted by HLA-A0207 and -C(W)0304 alleles. J Virol 76: 4971–4986.
[19]  Kierstead LS, Dubey S, Meyer B, Tobery TW, Mogg R, et al. (2007) Enhanced rates and magnitude of immune responses detected against an HIV vaccine: effect of using an optimized process for isolating PBMC. AIDS Res Hum Retroviruses 23: 86–92.
[20]  Currier JR, Kuta EG, Turk E, Earhart LB, Loomis-Price L, et al. (2002) A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays. J Immunol Methods 260: 157–172.
[21]  Vahey MT, Wang Z, Kester KE, Cummings J, Heppner DG Jr, et al. (2010) Expression of genes associated with immunoproteasome processing of major histocompatibility complex peptides is indicative of protection with adjuvanted RTS,S malaria vaccine. J Infect Dis 201: 580–589.
[22]  Ngauy V, Bautista CT, Duffy K, Humphries MJ, Lewis Y, et al. (2009) Increased African-American involvement in vaccine studies. J Clin Epidemiol 62: 111–113.
[23]  Marovich MA (2004) ALVAC-HIV vaccines: clinical trial experience focusing on progress in vaccine development. Expert Rev Vaccines 3: S99–104.
[24]  Franchini G, Gurunathan S, Baglyos L, Plotkin S, Tartaglia J (2004) Poxvirus-based vaccine candidates for HIV: two decades of experience with special emphasis on canarypox vectors. Expert Rev Vaccines 3: S75–88.
[25]  Spearman P (2003) HIV vaccine development: lessons from the past and promise for the future. Curr HIV Res 1: 101–120.
[26]  Yu XG, Addo MM, Rosenberg ES, Rodriguez WR, Lee PK, et al. (2002) Consistent patterns in the development and immunodominance of human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses following acute HIV-1 infection. J Virol 76: 8690–8701.
[27]  Appay V, Hansasuta P, Sutton J, Schrier RD, Wong JK, et al. (2002) Persistent HIV-1-specific cellular responses despite prolonged therapeutic viral suppression. AIDS 16: 161–170.
[28]  Day CL, Shea AK, Altfeld MA, Olson DP, Buchbinder SP, et al. (2001) Relative dominance of epitope-specific cytotoxic T-lymphocyte responses in human immunodeficiency virus type 1-infected persons with shared HLA alleles. J Virol 75: 6279–6291.
[29]  Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, et al. (2004) Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432: 769–775.
[30]  Koning FA, Jansen CA, Dekker J, Kaslow RA, Dukers N, et al. (2004) Correlates of resistance to HIV-1 infection in homosexual men with high-risk sexual behaviour. AIDS 18: 1117–1126.
[31]  Yewdall AW, Drutman SB, Jinwala F, Bahjat KS, Bhardwaj N (2010) CD8+ T cell priming by dendritic cell vaccines requires antigen transfer to endogenous antigen presenting cells. PLoS One 5: e11144.
[32]  Harenberg A, Guillaume F, Ryan EJ, Burdin N, Spada F (2008) Gene profiling analysis of ALVAC infected human monocyte derived dendritic cells. Vaccine 26: 5004–5013.
[33]  Longman RS, Braun D, Pellegrini S, Rice CM, Darnell RB, et al. (2007) Dendritic-cell maturation alters intracellular signaling networks, enabling differential effects of IFN-alpha/beta on antigen cross-presentation. Blood 109: 1113–1122.
[34]  Dieckmann D, Schultz ES, Ring B, Chames P, Held G, et al. (2005) Optimizing the exogenous antigen loading of monocyte-derived dendritic cells. Int Immunol 17: 621–635.
[35]  Schaft N, Dorrie J, Thumann P, Beck VE, Muller I, et al. (2005) Generation of an optimized polyvalent monocyte-derived dendritic cell vaccine by transfecting defined RNAs after rather than before maturation. J Immunol 174: 3087–3097.
[36]  Dhodapkar MV, Krasovsky J, Steinman RM, Bhardwaj N (2000) Mature dendritic cells boost functionally superior CD8(+) T-cell in humans without foreign helper epitopes. J Clin Invest 105: R9–R14.
[37]  Jonuleit H, Giesecke-Tuettenberg A, Tuting T, Thurner-Schuler B, Stuge TB, et al. (2001) A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 93: 243–251.


comments powered by Disqus

Contact Us


微信:OALib Journal