All Title Author
Keywords Abstract

PLOS Medicine  2010 

Early Pandemic Influenza (2009 H1N1) in Ho Chi Minh City, Vietnam: A Clinical Virological and Epidemiological Analysis

DOI: 10.1371/journal.pmed.1000277

Full-Text   Cite this paper   Add to My Lib


Background To date, little is known about the initial spread and response to the 2009 pandemic of novel influenza A (“2009 H1N1”) in tropical countries. Here, we analyse the early progression of the epidemic from 26 May 2009 until the establishment of community transmission in the second half of July 2009 in Ho Chi Minh City (HCMC), Vietnam. In addition, we present detailed systematic viral clearance data on 292 isolated and treated patients and the first three cases of selection of resistant virus during treatment in Vietnam. Methods and Findings Data sources included all available health reports from the Ministry of Health and relevant health authorities as well as clinical and laboratory data from the first confirmed cases isolated at the Hospital for Tropical Diseases in HCMC. Extensive reverse transcription (RT)-PCR diagnostics on serial samples, viral culture, neuraminidase-inhibition testing, and sequencing were performed on a subset of 2009 H1N1 confirmed cases. Virological (PCR status, shedding) and epidemiological (incidence, isolation, discharge) data were combined to reconstruct the initial outbreak and the establishment of community transmission. From 27 April to 24 July 2009, approximately 760,000 passengers who entered HCMC on international flights were screened at the airport by a body temperature scan and symptom questionnaire. Approximately 0.15% of incoming passengers were intercepted, 200 of whom tested positive for 2009 H1N1 by RT-PCR. An additional 121 out of 169 nontravelers tested positive after self-reporting or contact tracing. These 321 patients spent 79% of their PCR-positive days in isolation; 60% of PCR-positive days were spent treated and in isolation. Influenza-like illness was noted in 61% of patients and no patients experienced pneumonia or severe outcomes. Viral clearance times were similar among patient groups with differing time intervals from illness onset to treatment, with estimated median clearance times between 2.6 and 2.8 d post-treatment for illness-to-treatment intervals of 1–4 d, and 2.0 d (95% confidence interval 1.5–2.5) when treatment was started on the first day of illness. Conclusions The patients described here represent a cross-section of infected individuals that were identified by temperature screening and symptom questionnaires at the airport, as well as mildly symptomatic to moderately ill patients who self-reported to hospitals. Data are observational and, although they are suggestive, it is not possible to be certain whether the containment efforts delayed community transmission in Vietnam.


[1]  (2009) Influenza pandemic (H1N1) 2009: Viet Nam, patient data - 20090708.2450. ProMED-mail.
[2]  (2009) Influenza pandemic (H1N1) 2009: Viet Nam, patient data update - 20090809.2819. ProMED-mail.
[3]  (2009) Influenza pandemic (H1N1) 2009: Viet Nam, virus clearance - 20091011.3519. ProMED-mail.
[4]  (2009) Daily health reports. Ho Chi Minh City Health Services.
[5]  WHO/USCDC (2009) CDC Protocol for realtime RTPCR for influenza A(H1N1) - revision 1 30 April 2009.
[6]  Guan Y, Peiris JS, Lipatov AS, Ellis TM, Dyrting KC, et al. (2002) Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci U S A 99: 8950–8955.
[7]  Potier M, Mameli L, Belisle M, Dallaire L, Melancon SB (1979) Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylne?uraminate)substrate. Anal Biochem 94: 287–296.
[8]  Wetherall NT, Trivedi T, Zeller J, Hodges-Savola C, McKimm-Breschkin JL, et al. (2003) Evaluation of neuraminidase enzyme assays using different substrates to measure susceptibility of influenza virus clinical isolates to neuraminidase inhibitors: report of the neuraminidase inhibitor susceptibility network. J Clin Microbiol 41: 742–750.
[9]  Matrosovich M, Matrosovich T, Carr J, Roberts NA, Klenk HD (2003) Overexpression of the alpha-2,6-sialyltransferase in MDCK cells increases influenza virus sensitivity to neuraminidase inhibitors. J Virol 77: 8418–8425.
[10]  Reich NG, Lessler J, Cummings DA, Brookmeyer R (2009) Estimating incubation period distributions with coarse data. Stat Med 28: 2769–2784.
[11]  Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, et al. (2009) Pandemic potential of a strain of influenza A (H1N1): early findings. Science 324: 1557–1561.
[12]  Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, et al. (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437: 209–214.
[13]  Cowling BJ, Fang VJ, Riley S, Malik Peiris JS, Leung GM (2009) Estimation of the serial interval of influenza. Epidemiology 20: 344–347.
[14]  Wallinga J, Lipsitch M (2007) How generation intervals shape the relationship between growth rates and reproductive numbers. Proc Biol Sci 274: 599–604.
[15]  de Silva UC, Warachit J, Waicharoen S, Chittaganpitch M (2009) A preliminary analysis of the epidemiology of influenza A(H1N1)v virus infection in Thailand from early outbreak data, June-July 2009. Euro Surveill 14: 19292.
[16]  Nguyen HT, Dharan NJ, Le MT, Nguyen NB, Nguyen CT, et al. (2009) National influenza surveillance in Vietnam, 2006-2007. Vaccine 28: 398–402.
[17]  Simmerman JM, Uyeki TM (2008) The burden of influenza in East and South-East Asia: a review of the English language literature. Influenza Other Respi Viruses 2: 81–92.
[18]  Mills CE, Robins JM, Bergstrom CT, Lipsitch M (2006) Pandemic influenza: risk of multiple introductions and the need to prepare for them. PLoS Med 3: e135. doi:10.1371/journal.pmed.0030135.
[19]  Cooper BS, Pitman RJ, Edmunds WJ, Gay NJ (2006) Delaying the international spread of pandemic influenza. PLoS Med 3: e212. doi:10.1371/journal.pmed.0030212.
[20]  Scalia Tomba G, Wallinga J (2008) A simple explanation for the low impact of border control as a countermeasure to the spread of an infectious disease. Math Biosci 214: 70–72.
[21]  Reed C, Angulo FJ, Swerdlow DL, Lipsitch M, Meltzer MI, et al. (2009) Estimates of the prevalence of pandemic (H1N1) 2009, United States, April-July 2009. Emerg Infect Dis 15: 2004–2007.
[22]  Novel influenza A(H1N1) investigation team (2009) Description of the early stage of pandemic (H1N1) 2009 in Germany, 27 April-16 June 2009. Euro Surveill 14: 19295.
[23]  Hahne S, Donker T, Meijer A, Timen A, van Steenbergen J, et al. (2009) Epidemiology and control of influenza A(H1N1)v in the Netherlands: the first 115 cases. Euro Surveill 14: 19267.
[24]  Hayden FG, Treanor JJ, Fritz RS, Lobo M, Betts RF, et al. (1999) Use of the oral neuraminidase inhibitor oseltamivir in experimental human influenza: randomized controlled trials for prevention and treatment. JAMA 282: 1240–1246.
[25]  Cunha BA, Pherez FM, Schoch P (2009) Diagnostic importance of relative lymphopenia as a marker of swine influenza (H1N1) in adults. Clin Infect Dis 49: 1454–1456.
[26]  Cao B, Li XW, Mao Y, Wang J, Lu HZ, et al. (2009) Clinical features of the initial cases of 2009 pandemic influenza A (H1N1) virus infection in China. N Engl J Med 361: 2507–2517.
[27]  Whitley RJ, Hayden FG, Reisinger KS, Young N, Dutkowski R, et al. (2001) Oral oseltamivir treatment of influenza in children. Pediatr Infect Dis J 20: 127–133.
[28]  De Serres F, Rouleau I, Hamelin M, Quach C, Boulianne N, et al. (2009) Shedding of novel 2009 pandemic H1N1 (nH1N1) virus at one week post illness onset [Abstract K-1918a].
[29]  Eggertson L (2009) Pandemic (H1N1) 2009 lives in some people for at least eight days after symptoms develop. Can Med Assoc J 181: E203.
[30]  Lye D, Chow A, Tan A, Win N, Win M, et al. (2009) Oseltamivir therapy and viral shedding in pandemic (H1N1) 2009.
[31]  Bhattarai A, Sessions W, Palekar R, Berman L, Winter J, et al. (2009) Viral shedding patterns of the pandemic influenza A H1N1 virus during an outbreak associated with an elementary school in Pennsylvania, May-June 2009.
[32]  Witkop CT, Duffy MR, Macias EA, Gibbons TF, Escobar JD, et al. (2009) Novel influenza A (H1N1) outbreak at the U.S. Air Force Academy: epidemiology and viral shedding duration. Am J Prev Med 38: 121–126.
[33]  Panning M, Eickmann M, Landt O, Monazahian M, Olschlager S, et al. (2009) Detection of influenza A(H1N1)v virus by real-time RT-PCR. Euro Surveill 14: 19329.
[34]  Kiso M, Mitamura K, Sakai-Tagawa Y, Shiraishi K, Kawakami C, et al. (2004) Resistant influenza A viruses in children treated with oseltamivir: descriptive study. Lancet 364: 759–765.
[35]  Whitley RJ, Hayden FG, Reisinger KS, Young N, Dutkowski R, et al. (2001) Oral oseltamivir treatment of influenza in children. Pediatr Infect Dis J 20: 127.
[36]  Gubareva LV, Kaiser L, Matrosovich MN, Soo-Hoo Y, Hayden FG (2001) Selection of influenza virus mutants in experimentally infected volunteers treated with oseltamivir. J Infect Dis 183: 523–531.
[37]  Stephenson I, Democratis J, Lackenby A, McNally T, Smith J, et al. (2009) Neuraminidase inhibitor resistance after oseltamivir treatment of acute influenza A and B in children. Clin Infect Dis 48: 389–396.
[38]  Bansal S, Pourbohloul B, Hupert N, Grenfell B, Myers LA (2009) The shifting demographic landscape of influenza, version 2. PLoS Currents Influenza. Available:
[39]  Boni MF, Gog JR, Andreasen V, Feldman MW (2006) Epidemic dynamics and antigenic evolution in a single season of influenza A. Proc Biol Sci 273: 1307–1316.
[40]  Boni MF, Manh BH, Thai PQ, Farrar J, Hien TT, et al. (2009) Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses. BMC Medicine 7: 43.


comments powered by Disqus