A Functional and Structural Mongolian Scots Pine (Pinus sylvestris var. mongolica) Model Integrating Architecture, Biomass and Effects of Precipitation
Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal tree species in the network of Three-North Shelterbelt for windbreak and sand stabilisation in China. The functions of shelterbelts are highly correlated with the architecture and eco-physiological processes of individual tree. Thus, model-assisted analysis of canopy architecture and function dynamic in Mongolian Scots pine is of value for better understanding its role and behaviour within shelterbelt ecosystems in these arid and semiarid regions. We present here a single-tree functional and structural model, derived from the GreenLab model, which is adapted for young Mongolian Scots pines by incorporation of plant biomass production, allocation, allometric rules and soil water dynamics. The model is calibrated and validated based on experimental measurements taken on Mongolian Scots pines in 2007 and 2006 under local meteorological conditions. Measurements include plant biomass, topology and geometry, as well as soil attributes and standard meteorological data. After calibration, the model allows reconstruction of three-dimensional (3D) canopy architecture and biomass dynamics for trees from one- to six-year-old at the same site using meteorological data for the six years from 2001 to 2006. Sensitivity analysis indicates that rainfall variation has more influence on biomass increment than on architecture, and the internode and needle compartments and the aboveground biomass respond linearly to increases in precipitation. Sensitivity analysis also shows that the balance between internode and needle growth varies only slightly within the range of precipitations considered here. The model is expected to be used to investigate the growth of Mongolian Scots pines in other regions with different soils and climates.
References
[1]
Reynolds JF, Smith DMS, Lambin EF, Turner BL, Mortimore M, et al. (2007) Global Desertification: Building a Science for Dryland Development. Science 316: 847–851.
[2]
Ma Q (2004) Appraisal of tree planting options to control desertification: Experiences from the Three-North Shelterbelt Programme. International Forestry Review 6: 327–334.
[3]
Wang F, Kang MZ, Lu Q, Han H, Letort V, et al.. (2010) Calibration of topological development in the procedure of parametric identification: application of the stochastic GreenLab model for Pinus sylvestris var. mongolica. In: Li BG, Jeager M and Guo Y, Third International Symposium on Plant Growth Modeling, Simulation, Visualization and their Applications – PMA’09. Beijing, China: IEEE Computer Society. 26–33.
[4]
Bang C, Sabo JL, Faeth SH (2010) Reduced Wind Speed Improves Plant Growth in a Desert City. PLoS ONE 5(6): e11061 doi: 10.1371/journal.pone.0011061.
[5]
Siev?nen R, Nikinmaa E, Nygren P, Ozier-Lafontaine AH, Perttunen J, et al. (2000) Components of functional-structural tree models. Annals of Forest Science 57: 399–412.
[6]
Godin C, Sinoquet H (2005) Functional-structural plant modelling. New Phytologist 166: 705–708.
[7]
Rauscher HM, Isebrands JG, Host GE, Dickson RE, Dickmann DI, et al. (1990) ECOPHYS: An ecophysiological growth process model for juvenile poplar, Tree Physiology. 7: 255–281.
[8]
Host GE, Stech HW, Lenz KE, Roskoski K, Mather R (2008) Forest patch modeling: using high performance computing to simulate aboveground interactions among individual trees. Functional Plant Biology 35: 976–987.
[9]
Bosc A (2000) EMILION, a tree functional-structural model: presentation and first application to the analysis of branch carbon balance. Annals of Forest Science 57: 555–569.
[10]
Balandier P, Lacointe A, Le Roux X, Sinoquet H, Cruiziat P, et al. (2000) SIMWAL: a structural-functional model simulating single walnut tree growth in response to climate and pruning. Annals of Forest Science 57: 571–585.
[11]
Perttunen J, Siev?nen R, Nikinmaa E, Salminen H, Saarenmaa H, et al. (1996) LIGNUM - a tree model based on simple structural units. Annals of Botany-London 77: 87–98.
[12]
Perttunen J, Siev?nen R, Nikinmaa E (1998) LIGNUM: a model combining the structure and the functioning of trees. Ecological Modelling 108: 189–198.
[13]
Allen MT, Prusinkiewicz P, DeJong TM (2005) Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model. New Phytologist 166: 869–880.
[14]
Lopez G, Favreau RR, Ssmith C, Costes E, Prusinkiewicz P, et al. (2008) Integrating simulation of architectural development and source–sink behaviour of peach trees by incorporating Markov chains and physiological organ function submodels into L-PEACH. Functional Plant Biology 35: 761–771.
[15]
Yan HP, Kang MZ, de Reffye P, Dingkuhn M (2004) A dynamic, architectural plant model simulating resource-dependent growth. Annals of Botany-London 93: 591–602.
[16]
Mathieu A, Cournède PH, Letort V, Barthélémy D, de Reffye P (2009) A dynamic model of plant growth with interactions between development and functional mechanisms to study plant structural plasticity related to trophic competition. Annals of Botany-London 103: 1173–1186.
[17]
Guo Y, Ma YT, Zhan ZG, Li BG, Dingkuhn M, et al. (2006) Parameter optimization and field validation of the functional-structural model GREENLAB for maize. Annals of Botany-London 97: 217–230.
[18]
Kang MZ, Evers JB, Vos J, de Reffye P (2008) The derivation of sink functions of wheat organs using the GREENLAB model. Annals of Botany-London 101: 1099–1108.
[19]
Dong QX, Louarn G, Wang YM, Barczi JF, de Reffye P (2008) Does the structure-function model GREENLAB deal with crop phenotypic plasticity induced by plant spacing? A case study on tomato. Annals of Botany-London 101: 1195–1206.
[20]
Letort V, Cournede P, Mathieu A, de Reffye P, Constant T (2008) Parametric identification of a functional-structural tree growth model and application to beech trees (Fagus sylvatica). Functional Plant Biology 35: 951–963.
[21]
Diao J, De Reffye P, Lei X, Guo H, Letort V (2012) Simulation of the topological development of young eucalyptus using a stochastic model and sampling measurement strategy. Computers and Electronics in Agriculture 80: 105–114.
[22]
Guo H, Lei X, Cournede P, Letort V (2012) Characterization of the effects of inter-tree competition on source–sink balance in Chinese pine trees with the GreenLab model. Trees - Structure and Function 26: 1057–1067.
[23]
Kang M, Heuvelink E, Carvalho SMP, de Reffye P (2012) A virtual plant that responds to the environment like a real one: the case for chrysanthemum. New Phytologist 195: 384–395.
[24]
Wang F, Guo Y, Lu Q, Bai XF, Han H, et al. (2007) Modelling three-dimensional architecture of pine tree (Pinus sylvestris Linn. var. mongolica Litv.) in a semiarid area. New Zealand Journal of Agricultural Research 50: 903–909.
[25]
Purves DW, Lichstein JW, Pacala SW (2007) Crown Plasticity and Competition for Canopy Space: A New Spatially Implicit Model Parameterized for 250 North American Tree Species. PLoS ONE 2(9): e870 doi: 10.1371/journal.pone.0000870.
[26]
Middleton N, Thomas D (1992) World Atlas of Desertification. UNEP. London: Edward Arnold. p69.
[27]
Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany-London 99: 375–407.
[28]
Steduto P, Hsiao T, Fereres E (2007) On the conservative behavior of biomass water productivity. Irrigation Science 25: 189–207.
[29]
Marcelis LFM (1996) Sink strength as a determinant of dry matter partitioning in the whole plant. Journal of Experimental Botany 47: 1281–1291.
[30]
Wang F, Kang M, Lu Q, Letort V, Han H, et al. (2011) A stochastic model of tree architecture and biomass partitioning: application to Mongolian Scots pines. Annals of Botany-London 107: 781–792.
[31]
Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, FAO – Food and Agriculture Organization of the United Nations, Rome. 300p.
[32]
Childs SW, Gilley JR, Splinter WE (1977) A simplified model of corn growth under moisture stress. Transactions of the American Society of Agricultural Engineers 20: 858–870.
[33]
Jarvis PG, James GB, Landsberg JJ (1976) Coniferous forests. In: Monteith JL. ed. Vegetation and the atmosphere, Vol. 2. London: Academic Press: 171–240.
[34]
Cournède PH, Kang MZ, Mathieu A, Barczi JF, Yan HP, et al. (2006) Structural factorization of plants to compute their functional and architectural growth. Simulation 82: 427–438.
[35]
Zhan ZG, de Reffye P, Houllier F, Hu BG. (2003) Fitting a structural-functional model with plant architectural data. In: Hu BG, Jaeger M, eds. Proceeding of Plant Growth Modeling and Applications - PMA’03. Beijing, China: Tsinghua University Press and Springer. 236–249.
[36]
Cournède PH, Letort V, Mathieu A, Kang MZ, Lemaire S, et al. (2011) Some parameter estimation issues in functional-structural plant modelling. Math Model Nat Phenom 6: 133–159.
[37]
Steduto P, Albrizio R (2005) Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea: II. Water use efficiency and comparison with radiation use efficiency. Agricultural and Forest Meteorology 130: 269–281.
[38]
Landsberg JJ (1999) Relationships between water use efficiency and tree production. In Landsberg JJ (Ed.) The Ways Trees Use Water. Rural Industries Research and Development Corporation, Australian Capital Territory. 45–54.
[39]
Almeida AC, Soares JV, Landsberg JJ, Rezende GD (2007) Growth and water balance of Eucalyptus grandis hybrid plantations in Brazil during a rotation for pulp production. Forest Ecology and Management 251: 10–21.
[40]
Le Chevalier V, Jaeger M, Mei X, Cournede P (2007) Simulation and visualisation of functional landscapes: effects of the water resource competition between plants. Journal of Computer Science and Technology 22: 835–845.
[41]
Eschenbach C (2005) Emergent properties modelled with the functional structural tree growth model ALMIS: Computer experiments on resource gain and use. Ecological Modelling 186: 470–488.
[42]
Renton M, Kaitaniemi P, Hanan J (2005) Functional-structural plant modelling using a combination of architectural analysis, L-systems and a canonical model of function. Ecological Modelling 184: 277–298.
[43]
Sterck FJ, Schieving F, Lemmens A, Pons TL (2005) Performance of trees in forest canopies: explorations with a bottom-up functional-structural plant growth model. New Phytologist 166: 827–843.
[44]
Pearcy RW, Muraoka H, Valladares F (2005) Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model. New Phytologist 166: 791–800.
[45]
Zheng BY, Shi LJ, Ma YT, Deng QY, Li BG, et al. (2008) Comparison of architecture among different cultivars of hybrid rice using a spatial light model based on 3-D digitising. Funct Plant Biol 35: 900–910.
[46]
Wu L, McGechan MB, McRoberts N, Baddeley JA, Watson CA (2007) SPACSYS: Integration of a 3D root architecture component to carbon, nitrogen and water cycling-Model description. Ecological Modelling 200: 343–359.
[47]
?im?nek J, Hopmans JW (2009) Modeling compensated root water and nutrient uptake. Ecological Modelling 220: 505–521.
[48]
Drouet J, Pagès L (2007) GRAAL-CN: A model of GRowth, Architecture and ALlocation for Carbon and Nitrogen dynamics within whole plants formalised at the organ level. Ecological Modelling 206: 231–249.
[49]
Landsberg JJ, Sands P (2010) Physiological Ecology of Forest Production. Elsevier. 46p.
[50]
Dingkuhn M, Luquet D, Quilot B, de Reffye P (2005) Environmental and genetic control of morphogenesis in crops: towards models simulating phenotypic plasticity. Australian Journal of Agricultural Research 56: 1289–1302.