All Title Author
Keywords Abstract

PLOS ONE  2012 

Silencing of XB130 Is Associated with Both the Prognosis and Chemosensitivity of Gastric Cancer

DOI: 10.1371/journal.pone.0041660

Full-Text   Cite this paper   Add to My Lib

Abstract:

XB130 is a newly characterized adaptor protein that was reported to promote thyroid tumor growth, but its role in the progression of other kinds of cancer such as gastric cancer (GC) remains unknown. Accordingly, we investigated the association between XB130 expression and the prognosis of GC patients. The subjects were 411 patients with GC in stages I to IV. XB130 expression was examined in surgical specimens of GC. Kaplan-Meier analysis and the Cox proportional hazards model were used to assess the prognostic significance of XB130 for survival and recurrence. Moreover, GC cells stably transfected with XB130 short hairpin RNA were established to analyze the effect of XB130 on sensitivity of chemotherapy. The results show that both XB130 mRNA and protein expression were detectable in normal gastric tissues. The overall survival time of stage IV patients and the disease-free period after radical resection of GC in stage I–III patients were significantly shorter when immunohistochemical staining for XB130 was low than when staining was high (both p<0.05). XB130 expression also predicted tumor sensitivity to several chemotherapy agents. Viability of both XB130-silenced SGC7901 cells and wild-type cells was suppressed by 5-fluorouracil (5-FU), cisplatin, and irinotecan in a dose-dependent way, but cisplatin and irinotecan were more sensitive against sXB130-silenced GC cells and 5-FU showed higher sensitivity to wild-type cells. When treated by 5-FU, patients with high expression of XB130 tumors had a higher survival rate than those with low expression tumors. These findings indicate that reduced XB130 protein expression is a prognostic biomarker for shorter survival and a higher recurrence rate in patients with GC, as well as for the response to chemotherapy.

References

[1]  Xu J, Bai XH, Lodyga M, Han B, Xiao H, et al. (2007) XB130, a novel adaptor protein for signal transduction. J Biol Chem 282: 16401–16412.
[2]  Shiozaki A, Lodyga M, Bai XH, Nadesalingam J, Oyaizu T, et al. (2011) XB130, a novel adaptor protein, promotes thyroid tumor growth. Am J Pathol 178: 391–401.
[3]  Lodyga M, Bai XH, Kapus A, Liu M (2010) Adaptor protein XB130 is a Rac-controlled component of lamellipodia that regulates cell motility and invasion. J Cell Sci 123: 4156–4169.
[4]  Lodyga M, De Falco V, Bai XH, Kapus A, Melillo RM, et al. (2009) XB130, a tissue-specific adaptor protein that couples the RET/PTC oncogenic kinase to PI 3-kinase pathway. Oncogene 28: 937–949.
[5]  McLachlan RW, Kraemer A, Helwani FM, Kovacs EM, Yap AS (2007) E-cadherin adhesion activates c-Src signaling at cell-cell contacts. Mol Biol Cell 18: 3214–3223.
[6]  Murai T, Miyauchi T, Yanagida T, Sako Y (2006) Epidermal growth factor-regulated activation of Rac GTPase enhances CD44 cleavage by metalloproteinase disintegrin ADAM10. Biochem J 395: 65–71.
[7]  Bae IH, Park MJ, Yoon SH, Kang SW, Lee SS, et al. (2006) Bcl-w promotes gastric cancer cell invasion by inducing matrix metalloproteinase-2 expression via phosphoinositide 3-kinase, Akt, and Sp1. Cancer Res 66: 4991–4995.
[8]  Shiozaki A, Liu M (2011) Roles of XB130, a novel adaptor protein, in cancer. J Clin Bioinforma 1: 10.
[9]  Yamanaka D, Akama T, Fukushima T, Nedachi T, Kawasaki C, et al. (2012) Phosphatidylinositol 3-Kinase-Binding Protein, PI3KAP/XB130, Is Required for cAMP-induced Amplification of IGF Mitogenic Activity in FRTL-5 Thyroid Cells. Mol Endocrinol 26: 1043–1055.
[10]  Feng CW, Wang LD, Jiao LH, Liu B, Zheng S, et al. (2002) Expression of p53, inducible nitric oxide synthase and vascular endothelial growth factor in gastric precancerous and cancerous lesions: correlation with clinical features. BMC Cancer 2: 8.
[11]  Pan W, Ishii H, Ebihara Y, Gobe G (2003) Prognostic use of growth characteristics of early gastric cancer and expression patterns of apoptotic, cell proliferation, and cell adhesion proteins. J Surg Oncol 82: 104–110.
[12]  Testino G, Gada D, De Iaco F, Cornaggia M (2002) p53 and Ki-67 expression in epithelial gastric dysplasia and in gastric cancer. Panminerva Med 44: 369–371.
[13]  Zhang J, Chen YH, Lu Q (2010) Pro-oncogenic and anti-oncogenic pathways: opportunities and challenges of cancer therapy. Future Oncol 6: 587–603.
[14]  Kossatz U, Malek NP (2007) p27: tumor suppressor and oncogene …? Cell Res 17: 832–833.
[15]  Damm K (1993) ErbA: tumor suppressor turned oncogene? FASEB J 7: 904–909.
[16]  Johnson DG (2000) The paradox of E2F1: oncogene and tumor suppressor gene. Mol Carcinog 27: 151–157.
[17]  Kos FT, Uncu D, Ozdemir N, Budakoglu B, Odabas H, et al. (2011) Comparison of cisplatin-5-fluorouracil-folinic acid versus modified docetaxel-cisplatin-5-fluorouracil regimens in the first-line treatment of metastatic gastric cancer. Chemotherapy 57: 230–235.
[18]  Takiuchi H (2011) Irinotecan is inactive as a first-line treatment, but plays an important part in gastric cancer treatment. Gastric Cancer 14: 1–3.
[19]  Montagnani F, Turrisi G, Marinozzi C, Aliberti C, Fiorentini G (2011) Effectiveness and safety of oxaliplatin compared to cisplatin for advanced, unresectable gastric cancer: a systematic review and meta-analysis. Gastric Cancer 14: 50–55.

Full-Text

comments powered by Disqus