All Title Author
Keywords Abstract

PLOS Genetics  2010 

Incipient Balancing Selection through Adaptive Loss of Aquaporins in Natural Saccharomyces cerevisiae Populations

DOI: 10.1371/journal.pgen.1000893

Full-Text   Cite this paper   Add to My Lib


A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw–tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function—providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments—contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection.


[1]  Mitchell-Olds T, Willis JH, Goldstein DB (2007) Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet 8: 845–856.
[2]  Akey JM, Zhang G, Zhang K, Jin L, Shriver MD (2002) Interrogating a high-density SNP map for signatures of natural selection. Genome Res 12: 1805–1814.
[3]  Clark AG, Glanowski S, Nielsen R, Thomas PD, Kejariwal A, et al. (2003) Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science 302: 1960–1963.
[4]  Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, et al. (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3: e170. doi:10.1371/journal.pbio.0030170.
[5]  Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, et al. (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419: 832–837.
[6]  Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4: e72. doi:10.1371/journal.pbio.0050147.
[7]  Yamasaki M, Tenaillon MI, Bi IV, Schroeder SG, Sanchez-Villeda H, et al. (2005) A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17: 2859–2872.
[8]  Mackay TF, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10: 565–577.
[9]  Kvitek DJ, Will JL, Gasch AP (2008) Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 4: e1000223. doi:10.1371/journal.pgen.1000223.
[10]  Tanghe A, Van Dijck P, Dumortier F, Teunissen A, Hohmann S, et al. (2002) Aquaporin expression correlates with freeze tolerance in baker's yeast, and overexpression improves freeze tolerance in industrial strains. Appl Environ Microbiol 68: 5981–5989.
[11]  Tanghe A, Van Dijck P, Colavizza D, Thevelein JM (2004) Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions. Appl Environ Microbiol 70: 3377–3382.
[12]  Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708–713.
[13]  Bonhivers M, Carbrey JM, Gould SJ, Agre P (1998) Aquaporins in Saccharomyces. Genetic and functional distinctions between laboratory and wild-type strains. J Biol Chem 273: 27565–27572.
[14]  Carbrey JM, Bonhivers M, Boeke JD, Agre P (2001) Aquaporins in Saccharomyces: Characterization of a second functional water channel protein. Proc Natl Acad Sci U S A 98: 1000–1005.
[15]  Laize V, Gobin R, Rousselet G, Badier C, Hohmann S, et al. (1999) Molecular and functional study of AQY1 from Saccharomyces cerevisiae: role of the C-terminal domain. Biochem Biophys Res Commun 257: 139–144.
[16]  Laize V, Tacnet F, Ripoche P, Hohmann S (2000) Polymorphism of Saccharomyces cerevisiae aquaporins. Yeast 16: 897–903.
[17]  Sniegowski PD, Dombrowski PG, Fingerman E (2002) Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEMS Yeast Res 1: 299–306.
[18]  Kim HS, Fay JC (2007) Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds. Proc Natl Acad Sci U S A 104: 19387–19391.
[19]  Tanghe A, Van Dijck P, Thevelein JM (2006) Why do microorganisms have aquaporins? Trends Microbiol 14: 78–85.
[20]  Fay JC, Benavides JA (2005) Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet 1: e5. doi:10.1371/journal.pgen.0010005.
[21]  Liti G, Carter DM, Moses AM, Warringer J, Parts L, et al. (2009) Population genomics of domestic and wild yeasts. Nature 458: 337–341.
[22]  McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652–654.
[23]  Wright SI, Charlesworth B (2004) The HKA test revisited: a maximum-likelihood-ratio test of the standard neutral model. Genetics 168: 1071–1076.
[24]  Kreitman M (2000) Methods to detect selection in populations with applications to the human. Annu Rev Genomics Hum Genet 1: 539–559.
[25]  Charlesworth D (2006) Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet 2: e64. doi:10.1371/journal.pgen.0020064.
[26]  Legras JL, Merdinoglu D, Cornuet JM, Karst F (2007) Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16: 2091–2102.
[27]  Replansky T, Koufopanou V, Greig D, Bell G (2008) Saccharomyces sensu stricto as a model system for evolution and ecology. Trends Ecol Evol 23: 494–501.
[28]  Ruderfer DM, Pratt SC, Seidel HS, Kruglyak L (2006) Population genomic analysis of outcrossing and recombination in yeast. Nat Genet 38: 1077–1081.
[29]  Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L (2009) Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458: 342–345.
[30]  Teshima K, Coop G, Przeworski M (2006) How reliable are empirical genomic scans for selective sweeps? Genome Res 6: 702–712.
[31]  Catharino RR, Cunha IB, Fogaca AO, Facco EM, Godoy HT, et al. (2006) Characterization of must and wine of six varieties of grapes by direct infusion electrospray ionization mass spectrometry. J Mass Spectrom 41: 185–190.
[32]  Sidoux-Walter F, Pettersson N, Hohmann S (2004) The Saccharomyces cerevisiae aquaporin Aqy1 is involved in sporulation. Proc Natl Acad Sci U S A 101: 17422–17427.
[33]  Gerke JP, Chen CT, Cohen BA (2006) Natural isolates of Saccharomyces cerevisiae display complex genetic variation in sporulation efficiency. Genetics 174: 985–997.
[34]  Karpel JE, Bisson LF (2006) Aquaporins in Saccharomyces cerevisiae wine yeast. FEMS Microbiol Lett 257: 117–123.
[35]  Doniger SW, Kim HS, Swain D, Corcuera D, Williams M, et al. (2008) A catalog of neutral and deleterious polymorphism in yeast. PLoS Genet 4: e1000183. doi:10.1371/journal.pgen.1000183.
[36]  Naumov GI, James SA, Naumova ES, Louis EJ, Roberts IN (2000) Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. Int J Syst Evol Microbiol 50 Pt 5: 1931–1942.
[37]  Fay JC, McCullough HL, Sniegowski PD, Eisen MB (2004) Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biol 5: R26.
[38]  Sampaio JP, Goncalves P (2008) Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl Environ Microbiol 74: 2144–2152.
[39]  Xu Z, Leininger T, Lee AW, Tainter F (2001) Chemical properties associated with bacterial wetwood in red oaks. Wood Fiber Sci 33: 76–83.
[40]  Aa E, Townsend JP, Adams RI, Nielsen KM, Taylor JW (2006) Population structure and gene evolution in Saccharomyces cerevisiae. FEMS Yeast Res 6: 702–715.
[41]  Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323: 737–741.
[42]  Diezmann S, Dietrich FS (2009) Saccharomyces cerevisiae: population divergence and resistance to oxidative stress in clinical, domesticated and wild isolates. PLoS ONE 4: e5317. doi:10.1371/journal.pone.0005317.
[43]  Kainth P, Sassi HE, Pena-Castillo L, Chua G, Hughes TR, et al. (2009) Comprehensive genetic analysis of transcription factor pathways using a dual reporter gene system in budding yeast. Methods 48: 258–264.
[44]  Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890.
[45]  Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.


comments powered by Disqus

Contact Us


微信:OALib Journal