All Title Author
Keywords Abstract

PLOS Genetics  2010 

Bulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene from Saccharomyces cerevisiae

DOI: 10.1371/journal.pgen.1000942

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fermentation of xylose is a fundamental requirement for the efficient production of ethanol from lignocellulosic biomass sources. Although they aggressively ferment hexoses, it has long been thought that native Saccharomyces cerevisiae strains cannot grow fermentatively or non-fermentatively on xylose. Population surveys have uncovered a few naturally occurring strains that are weakly xylose-positive, and some S. cerevisiae have been genetically engineered to ferment xylose, but no strain, either natural or engineered, has yet been reported to ferment xylose as efficiently as glucose. Here, we used a medium-throughput screen to identify Saccharomyces strains that can increase in optical density when xylose is presented as the sole carbon source. We identified 38 strains that have this xylose utilization phenotype, including strains of S. cerevisiae, other sensu stricto members, and hybrids between them. All the S. cerevisiae xylose-utilizing strains we identified are wine yeasts, and for those that could produce meiotic progeny, the xylose phenotype segregates as a single gene trait. We mapped this gene by Bulk Segregant Analysis (BSA) using tiling microarrays and high-throughput sequencing. The gene is a putative xylitol dehydrogenase, which we name XDH1, and is located in the subtelomeric region of the right end of chromosome XV in a region not present in the S288c reference genome. We further characterized the xylose phenotype by performing gene expression microarrays and by genetically dissecting the endogenous Saccharomyces xylose pathway. We have demonstrated that natural S. cerevisiae yeasts are capable of utilizing xylose as the sole carbon source, characterized the genetic basis for this trait as well as the endogenous xylose utilization pathway, and demonstrated the feasibility of BSA using high-throughput sequencing.

References

[1]  Somerville C (2007) Biofuels. Curr Biol 17: 115–119.
[2]  Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8: 1155–1163.
[3]  Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84: 37–53.
[4]  Hahn-H?gerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24: 549–556.
[5]  Farrell AE, Plevin RJ, Turner BT, Jones AD, O'Hare M, et al. (2006) Ethanol can contribute to energy and environmental goals. Science 311: 506–508.
[6]  Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OV, et al. (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19: 2258–2270.
[7]  Stambuk B, Dunn B, Alves-Jr S, Duval E, Sherlock G (2009) Industrial Fuel Ethanol Yeasts Contain Adaptive Copy Number Changes in Genes Involved in Vitamin B1 and B6 Biosynthesis. Genome Res 19: 2271–2278.
[8]  Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30: 279–291.
[9]  Attfield PV, Bell PJL (2006) Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res 6: 862–868.
[10]  Chiang LC, Gong CS, Chen LF, Tsao GT (1981) d-Xylulose Fermentation to Ethanol by Saccharomyces cerevisiae. Appl Environ Microbiol 42: 284–289.
[11]  Wang PY, Shopsis C, Schneider H (1980) Fermentation of a pentose by yeasts. Biochemical and Biophysical Research Communications 94: 248–254.
[12]  Gong CS, Claypool TA, McCracken LD, Maun CM, Ueng PP, et al. (1983) Conversion of pentoses by yeasts. Biotechnol Bioeng 25: 85–102.
[13]  Chang Q, Griest T, Harter T, Petrash J (2007) Functional studies of aldo-keto reductases in Saccharomyces cerevisiae. BBA-Molecular Cell Research 1773: 321–329.
[14]  Traff KL, Jonsson LJ, Hahn-H?gerdal B (2002) Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 19: 1233–1241.
[15]  Toivari MH, Salusjarvi L, Ruohonen L, Penttila M (2004) Endogenous xylose pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 70: 3681–3686.
[16]  Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17: 320–326.
[17]  K?tter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38: 776–783.
[18]  K?tter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18: 493–500.
[19]  Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-H?gerdal B, et al. (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Nat Biotechnol 9: 1090–1095.
[20]  Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating Saccharomyces cerevisiae. Journal of Fermentation and Bioengineering 75: 83–88.
[21]  Ho N, Chen Z, Brainard A (1998) Genetically Engineered Saccharomyces Yeast Capable of Effective Cofermentation of Glucose and Xylose. Appl Environ Microbiol 64: 1852–1859.
[22]  Jin YS, Jones S, Shi NQ, Jeffries TW (2002) Molecular cloning of XYL3 (D-xylulokinase) from Pichia stipitis and characterization of its physiological function. Appl Environ Microbiol 68: 1232–1239.
[23]  Walfridsson M, Bao X, Anderlund M, Lilius G, Bulow L, et al. (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62: 4648–4651.
[24]  Amore R, Wilhelm M, Hollenberg C (1989) The fermentation of xylose – an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl Microbiol Biotechnol 30: 351–357.
[25]  Kuyper M, Harhangi H, Stave A, Winkler A, Jetten M, et al. (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Research 4: 69–78.
[26]  Kuyper M, Winkler A, Dijken J, Pronk J (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Research 4: 655–664.
[27]  Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, et al. (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5: 399–409.
[28]  Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, et al. (2009) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82: 1067–1078.
[29]  Johansson B, Christensson C, Hobley T, Hahn-H?gerdal B (2001) Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67: 4249–4255.
[30]  Toivari MH, Aristidou A, Ruohonen L, Penttila M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3: 236–249.
[31]  Jin YS, Jeffries TW (2003) Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 106: 277–286.
[32]  Tr?ff-Bjerre KL, Jeppsson M, Hahn-H?gerdal B, Gorwa-Grauslund M-F (2004) Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast 21: 141–150.
[33]  Jeppsson M, Traff K, Johansson Br, Hahn-H?gerdal B, Gorwa-Grauslund M (2003) Efect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3: 167–175.
[34]  Walfridsson M, Hallborn J, Penttil? M, Ker?nen S, Hahn-H?gerdal B (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61: 4184–4190.
[35]  Jeppsson M, Johansson B, Hahn-H?gerdal B, Gorwa-Grauslund MF (2002) Reduced Oxidative Pentose Phosphate Pathway Flux in Recombinant Xylose-Utilizing Saccharomyces cerevisiae Strains Improves the Ethanol Yield from Xylose. Appl Environ Microbiol 68: 1604–1609.
[36]  Traff KL, Otero Cordero RR, van Zyl WH, Hahn-H?gerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67: 5668–5674.
[37]  Walfridsson M, Anderlund M, Bao X, Hahn-H?gerdal B (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48: 218–224.
[38]  Verho R, Londesborough J, Penttil? M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69: 5892–5897.
[39]  Petschacher B, Nidetzky B (2008) Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 7: 9.
[40]  Van Vleet JH, Jeffries TW, Olsson L (2008) Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metabolic Engineering 10: 360–369.
[41]  Bengtsson O, Hahn-H?gerdal B, Gorwa-Grauslund MF (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2: 9.
[42]  Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69: 1990–1998.
[43]  Pitk?nen J-P, Rintala E, Aristidou A, Ruohonen L, Penttil? M (2005) Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl Microbiol Biotechnol 67: 827–837.
[44]  Wahlbom CF, van Zyl WH, J?nsson LJ, Hahn-H?gerdal B, Otero RRC (2003) Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 3: 319–326.
[45]  Ni H, Laplaza JM, Jeffries TW (2007) Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Appl Environ Microbiol 73: 2061–2066.
[46]  Carreto L, Eiriz MF, Gomes AC, Pereira PM, Schuller D, et al. (2008) Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genomics 9: 524.
[47]  Dunn B, Levine RP, Sherlock G (2005) Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genomics 6: 53.
[48]  Kvitek DJ, Will JL, Gasch AP (2008) Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 4: e1000223. doi:10.1371/journal.pgen.1000223.
[49]  Fay JC, Benavides JA (2005) Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet 1: e5. doi:10.1371/journal.pgen.0010005.
[50]  Liti G, Carter DM, Moses AM, Warringer J, Parts L, et al. (2009) Population genomics of domestic and wild yeasts. Nature 458: 337–341.
[51]  Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L (2009) Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458: 342–345.
[52]  Brauer MJ, Christianson CM, Pai DA, Dunham MJ (2006) Mapping novel traits by array-assisted bulk segregant analysis in Saccharomyces cerevisiae. Genetics 173: 1813–1816.
[53]  Quarrie S, Lazic-Jancic V, Kovacevic D, Steed A, Pekic S (1999) Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. Journal of Experimental Botany 50: 1299–1306.
[54]  Borneman AR, Forgan AH, Pretorius IS, Chambers PJ (2008) Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res 8: 1185–1195.
[55]  Louis EJ (1995) The chromosome ends of Saccharomyces cerevisiae. Yeast 11: 1553–1573.
[56]  Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18: 1851–1858.
[57]  Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821–829.
[58]  Novo M, Bigey F, Beyne E, Galeote V, Gavory F, et al. (2009) Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A 106: 16333–16338.
[59]  Sikorski R, Hieter P (1989) A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
[60]  Rodriguez-Pe?a J, Cid V, Arroyo J (1998) The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiology Letters 162: 155–160.
[61]  Ho N, Chang S (1989) Cloning of yeast xylulokinase gene by complementation of E. coli and yeast mutations. Enzyme Microb Technol 11: 417–421.
[62]  Jin YS, Ni H, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69: 495–503.
[63]  Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116–5121.
[64]  Hibbs M, Wallace G, Dunham MJ, Kai L, Troyanskaya O (2007) Viewing the Larger Context of Genomic Data through Horizontal Integration. Information Visualization, 2007 IV '07 11th International Conference.
[65]  Brauer MJ, Huttenhower C, Airoldi EM, Rosenstein R, Matese JC, et al. (2008) Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol Biol Cell 19: 352–367.
[66]  DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–686.
[67]  Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241–4257.
[68]  Everitt BS (1974) Cluster analysis. London: Heinemann Educational [for] the Social Science Research Council.
[69]  Boyle EI, Weng S, Gollub J, Jin H, Botstein D, et al. (2004) GO::TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20: 3710–3715.
[70]  Bruinenberg P, Bot P, Dijken J, Scheffers W (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 18: 287–292.
[71]  Jeffries T (1983) Utilization of xylose by bacteria, yeasts, and fungi. In: Fiechter A, Jeffries T, editors. Pentoses and Lignin. Berlin/Heidelberg: Springer. pp. 1–32.
[72]  Bell PJ, Higgins VJ, Attfield PV (2001) Comparison of fermentative capacities of industrial baking and wild-type yeasts of the species Saccharomyces cerevisiae in different sugar media. Lett Appl Microbiol 32: 224–229.
[73]  Adams J, Hansche PE (1974) Population studies in microorganisms. I. Evolution of diploidy in Saccharomyces cerevisiae. Genetics 76: 327–338.
[74]  Schmitt ME, Brown TA, Trumpower BL (1990) A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18: 3091–3092.
[75]  Lee A, Hansen KD, Bullard J, Dudoit S, Sherlock G (2008) Novel low abundance and transient RNAs in yeast revealed by tiling microarrays and ultra high-throughput sequencing are not conserved across closely related yeast species. PLoS Genet 4: e1000299. 10.1371/journal.pgen.1000299.
[76]  Treco DA (1987) Preparation of Yeast DNA. In: Ausubel F, Brent R, Kingston R, Moore D, Seidman J, et al., editors. Curr Protoc Mol Biol. New York: John Wiley and Sons, Inc. pp. 13.11.11–13.11.12.
[77]  Kao KC, Sherlock G (2008) Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat Genet 40: 1499–1504.
[78]  Gresham D, Ruderfer DM, Pratt SC, Schacherer J, Dunham MJ, et al. (2006) Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science 311: 1932–1936.
[79]  Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16: 339–346.
[80]  Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793–1808.
[81]  Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953–961.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal