All Title Author
Keywords Abstract

Local and Global Effects of Climate on Dengue Transmission in Puerto Rico

DOI: 10.1371/journal.pntd.0000382

Full-Text   Cite this paper   Add to My Lib


The four dengue viruses, the agents of dengue fever and dengue hemorrhagic fever in humans, are transmitted predominantly by the mosquito Aedes aegypti. The abundance and the transmission potential of Ae. aegypti are influenced by temperature and precipitation. While there is strong biological evidence for these effects, empirical studies of the relationship between climate and dengue incidence in human populations are potentially confounded by seasonal covariation and spatial heterogeneity. Using 20 years of data and a statistical approach to control for seasonality, we show a positive and statistically significant association between monthly changes in temperature and precipitation and monthly changes in dengue transmission in Puerto Rico. We also found that the strength of this association varies spatially, that this variation is associated with differences in local climate, and that this relationship is consistent with laboratory studies of the impacts of these factors on vector survival and viral replication. These results suggest the importance of temperature and precipitation in the transmission of dengue viruses and suggest a reason for their spatial heterogeneity. Thus, while dengue transmission may have a general system, its manifestation on a local scale may differ from global expectations.


[1]  Christophers SR (1960) Aedes aegypti (L.): The Yellow Fever Mosquito. Cambridge: The University Press.
[2]  Keirans JE, Fay RW (1968) Effect of food and temperature on Aedes aegypti (L.) and Aedes triseriatus (Say) larval development. Mosq News 28: 338–341.
[3]  Pant CP, Yasuno M (1973) Field studies on the gonotrophic cycle of Aedes aegypti in Bangkok, Thailand. J Med Entomol 10: 219–223.
[4]  Rueda LM, Patel KJ, Axtell RC, Stinner RE (1990) Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol 27: 892–898.
[5]  Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A (1987) Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36: 143–152.
[6]  Bartley LM, Donnelly CA, Garnett GP (2002) The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms. Trans R Soc Trop Med Hyg 96: 387–397. doi: 10.1016/S0035-9203(02)90371-8
[7]  Hopp MJ, Foley JA (2003) Worldwide fluctuations in dengue fever cases related to climate variability. Climate Research 25: 85–94. doi: 10.3354/cr025085
[8]  Hales S, de Wet N, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360: 830–834. doi: 10.1016/S0140-6736(02)09964-6
[9]  Peterson AT, Martinez-Campos C, Nakazawa Y, Martinez-Meyer E (2005) Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Transactions of the Royal Society of Tropical Medicine and Hygiene 99: 647–655. doi: 10.1016/j.trstmh.2005.02.004
[10]  Rogers DJ, Wilson AJ, Hay SI, Graham AJ (2006) The global distribution of yellow Fever and dengue. Advances in Parasitology 62: 181–220. doi: 10.1016/S0065-308X(05)62006-4
[11]  Hay SI, Myers MF, Burke DS, Vaughn DW, Endy T, et al. (2000) Etiology of interepidemic periods of mosquito-borne disease. Proc Natl Acad Sci U S A 97: 9335–9339. doi: 10.1073/pnas.97.16.9335
[12]  Foo LC, Lim TW, Lee HL, Fang R (1985) Rainfall, abundance of Aedes and dengue infection in Selangor, Malaysia. Southeast Asian J Trop Med Pub Health 16: 560–568.
[13]  Keating J (2001) An investigation into the cyclical incidence of dengue fever. Soc Sci Med 53: 1587–1597. doi: 10.1016/S0277-9536(00)00443-3
[14]  Schreiber KV (2001) An investigation of relationships between climate and dengue using a water budgeting technique. Int J Biometeorol 45: 81–89. doi: 10.1007/s004840100090
[15]  Depradine C, Lovell E (2004) Climatological variables and the incidence of Dengue fever in Barbados. Int J Environ Health Res 14: 429–441. doi: 10.1080/09603120400012868
[16]  Nakhapakorn K, Tripathi NK (2005) An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Int J Health Geogr 4: 13–13. doi: 10.1186/1476-072X-4-13
[17]  Promprou S, Jaroensutasinee M, Jaroensutasinee K (2005) Climatic Factors Affecting Dengue Haemorrhagic Fever Incidence in Southern Thailand. Dengue Bulletin 29: 41.
[18]  Chowell G, Sanchez F (2006) Climate-based descriptive models of dengue fever: the 2002 epidemic in Colima, Mexico. J Environ Health 68: 40–44.
[19]  de Souza IC, Vianna RP, de Moraes RM (2007) [Modeling of dengue incidence in Paraíba State, Brazil, using distributed lag models]. Cad Saude Publica 23: 2623–2630. doi: 10.1590/S0102-311X2007001100010
[20]  Wu PC, Guo HR, Lung SC, Lin CY, Su HJ (2007) Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop 103: 50–57. doi: 10.1016/j.actatropica.2007.05.014
[21]  Hurtado-Díaz M, Riojas-Rodríguez H, Rothenberg SJ, Gomez-Dantés H, Cifuentes E (2007) Short communication: impact of climate variability on the incidence of dengue in Mexico. Trop Med Int Health 12: 1327–1337. doi: 10.1111/j.1365-3156.2007.01930.x
[22]  Rosa-Freitas MG, Schreiber KV, Tsouris P, Weimann ET, Luitgards-Moura JF (2006) Associations between dengue and combinations of weather factors in a city in the Brazilian Amazon. Rev Panam Salud Publica 20: 256–267. doi: 10.1590/S1020-49892006000900006
[23]  Hastie TJ (1992) Generalized additive models. In: Chambers JM, Hastie TJ, editors. Statistical Models in S. Boca Raton. FL: Chapman & Hall. pp. 249–308.
[24]  Everson PJ, Morris CN (2000) Inference for Multivariate Normal Hierarchical Models. Journal of the Royal Statistical Society, Series B 62: 399–412. doi: 10.1111/1467-9868.00239
[25]  Welty LG, Peng RD, Zeger SL, Dominici F (2008) Bayesian Distributed Lag Models: Estimating Effects of Particulate Matter Air Pollution on Daily Mortality. Biometrics Epub. doi: 10.1111/j.1541-0420.2007.01039.x
[26]  (1984) 1980 Census of Population. Vol. 1: Characteristics of the Population. Part 53A: Puerto Rico. U.S. Bureau of the Census.
[27]  (1991) 1990 Census of Population: General Population Characteristics: Puerto Rico. U.S. Bureau of the Census.
[28]  (2001) Census 2000 Summary File 1 Puerto Rico. U.S. Bureau of the Census.
[29]  (2002) Census 2000 Summary File 3 Puerto Rico. U.S. Bureau of the Census.
[30]  Johansson MA, Glass GE (2008) High-resolution spatiotemporal weather models for climate studies. International Journal of Health Geographics 7(52): doi: 10.1186/1476-072x-7-52
[31]  (2004) LandScan Global Population Database. Oak Ridge National Laboratory.
[32]  Hales S, Weinstein P, Woodward A (1996) Dengue fever epidemics in the South Pacific: driven by El Ni?o Southern Oscillation? Lancet 348: 1664–1665. doi: 10.1016/S0140-6736(05)65737-6
[33]  Hales S, Weinstein P, Souares Y, Woodward A (1999) El Ni?o and the dynamics of vectorborne disease transmission. Environ Health Perspect 107: 99–102. doi: 10.2307/3434364
[34]  Gagnon AS, Bush ABG, Smoyer-Tomic KE (2001) Dengue epidemics and the El Ni?o Southern Oscillation. Climate Research 19: 35–43. doi: 10.3354/cr019035
[35]  Cazelles B, Chavez M, McMichael AJ, Hales S (2005) Nonstationary influence of El Ni?o on the synchronous dengue epidemics in Thailand. PLoS Med 2: 313–318. doi: 10.1371/journal.pmed.0020106
[36]  Bangs MJ, Larasati RP, Corwin AL, Wuryadi S (2006) Climatic factors associated with epidemic dengue in Palembang, Indonesia: implications of short-term meteorological events on virus transmission. Southeast Asian J Trop Med Public Health 37: 1103–1116.
[37]  Ferguson N, Anderson R, Gupta S (1999) The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. Proc Natl Acad Sci U S A 96: 790–794. doi: 10.1073/pnas.96.2.790
[38]  Schwartz IB, Shaw LB, Cummings DA, Billings L, McCrary M, et al. (2005) Chaotic desynchronization of multistrain diseases. Phys Rev E 72: 066201. doi: 10.1103/physreve.72.066201
[39]  Wearing HJ, Rohani P (2006) Ecological and immunological determinants of dengue epidemics. Proc Natl Acad Sci U S A 103: 11802–11807. doi: 10.1073/pnas.0602960103
[40]  Adams B, Holmes EC, Zhang C, Mammen MP, Nimmannitya S, et al. (2006) Cross-protective immunity can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok. Proc Natl Acad Sci U S A 103: 14234–14239. doi: 10.1073/pnas.0602768103


comments powered by Disqus

Contact Us


微信:OALib Journal